IPsec VPN overview

IPsec VPN overview

This section provides a brief overview of IPsec technology and includes general information about how to configure IPsec VPNs using this guide.

The following topics are included in this section:

Types of VPNs

Planning your VPN

General preparation steps

How to use this guide to configure an IPsec VPN

 

VPN configurations interact with the firewall component of the FortiGate unit. There must be a security policy in place to permit traffic to pass between the private network and the VPN tunnel.

Security policies for VPNs specify:

  • The FortiGate interface that provides the physical connection to the remote VPN gateway, usually an interface connected to the Internet
  • The FortiGate interface that connects to the private network
  • IP addresses associated with data that has to be encrypted and decrypted
  • Optionally, a schedule that restricts when the VPN can operate
  • Optionally, the services (types of data) that can be sent

When the first packet of data that meets all of the conditions of the security policy arrives at the FortiGate unit, a VPN tunnel may be initiated and the encryption or decryption of data is performed automatically afterward. For more information, see Defining VPN security policies on page 1.

Where possible, you should create route-based VPNs. Generally, route-based VPNs are more flexible and easier to configure than policy-based VPNs — by default they are treated as interfaces. However, these two VPN types have different requirements that limit where they can be used.

Types of VPNs

FortiGate unit VPNs can be policy-based or route-based. There is little difference between the two types. In both cases, you specify Phase 1 and Phase 2 settings. However there is a difference in implementation. A route-based VPN creates a virtual IPsec network interface that applies encryption or decryption as needed to any traffic that it carries. That is why route-based VPNs are also known as interface-based VPNs. A policy-based VPN is implemented through a special security policy that applies the encryption you specified in the Phase 1 and Phase 2 settings.

Route-based VPNs

For a route-based VPN, you create two security policies between the virtual IPsec interface and the interface that connects to the private network. In one policy, the virtual interface is the source. In the other policy, the virtual interface is the destination.  This creates bidirectional policies that ensure traffic will flow in both directions over the VPN.

A route-based VPN is also known as an interface-based VPN.

overview                                                                                                                       Types of VPNs

Each route-based IPsec VPN tunnel requires a virtual IPsec interface. As such, the amount of possible route-based IPsec VPNs is limited by the system.interface table size. The system.interface table size for most devices is 8192.

For a complete list of table sizes for all devices, refer to the Maximum Values table.

Policy-based VPNs

For a policy-based VPN, one security policy enables communication in both directions.  You enable inbound and outbound traffic as needed within that policy, or create multiple policies of this type to handle different types of traffic differently. For example HTTPS traffic may not require the same level of scanning as FTP traffic.

A policy-based VPN is also known as a tunnel-mode VPN.

Comparing policy-based or route-based VPNs

For both VPN types you create Phase 1 and Phase 2 configurations. Both types are handled in the stateful inspection security layer, assuming there is no IPS or AV. For more information on the three security layers, see the FortiOS Troubleshooting guide.

The main difference is in the security policy.

You create a policy-based VPN by defining an IPSEC security policy between two network interfaces and associating it with the VPN tunnel (Phase 1) configuration.

You create a route-based VPN by creating a virtual IPsec interface. You then define a regular ACCEPT security policy to permit traffic to flow between the virtual IPsec interface and another network interface. And lastly, configure a static route to allow traffic over the VPN.

Where possible, you should create route-based VPNs. Generally, route-based VPNs are more flexible and easier to configure than policy-based VPNs — by default they are treated as interfaces. However, these two VPN types have different requirements that limit where they can be used.

Comparison of policy-based and route-based VPNs

Features Policy-based Route-based
Both NAT and transparent modes available Yes NAT mode only
L2TP-over-IPsec supported Yes Yes
GRE-over-IPsec supported No Yes
security policy requirements Requires a security policy with

IPSEC action that specifies the

VPN tunnel

Requires only a simple security policy with ACCEPT action
Number of policies per VPN One policy controls connections in both directions A separate policy is required for connections in each direction

Planning your VPN                                                                                                                   IPsec VPN overview

Planning your VPN

It is a good idea to plan the VPN configuration ahead of time. This will save time later and help you configure your VPN correctly.

All VPN configurations are comprised of numerous required and optional parameters. Before you begin, you need to determine:

  • Where the IP traffic originates and where it needs to be delivered
  • Which hosts, servers, or networks to include in the VPN
  • Which VPN devices to include in the configuration
  • Through which interfaces the VPN devices communicate
  • Through which interfaces do private networks access the VPN gateways

Once you have this information, you can select a VPN topology that suits the network environment.

Network topologies

The topology of your network will determine how remote peers and clients connect to the VPN and how VPN traffic is routed.

VPN network topologies and brief descriptions

Topology Description
Gateway-to-gateway configurations Standard one-to-one VPN between two FortiGate units. See Gateway-togateway configurations  on page 1.
Hub-and-spoke configurations One central FortiGate unit has multiple VPNs to other remote FortiGate units. See Hub-and-spoke configurations on page 1.
Dynamic DNS configuration One end of the VPN tunnel has a changing IP address and the other end must go to a dynamic DNS server for the current IP address before establishing a tunnel. See Dynamic DNS configuration on page 1.
FortiClient dialup-client configurations Typically remote FortiClient dialup-clients use dynamic IP addresses through NAT devices. The FortiGate unit acts as a dialup server allowing dialup VPN connections from multiple sources. See FortiClient dialup-client configurations on page 1.
FortiGate dialup-client configurations Similar to FortiClient dialup-client configurations but with more gateway-togateway settings such as unique user authentication for multiple users on a single VPN tunnel. See FortiGate dialup-client configurations  on page 1.
Internet-browsing configuration Secure web browsing performed by dialup VPN clients, and/or hosts behind a remote VPN peer. See Internet-browsing configuration on page 1.

overview                                                                                                       General preparation steps

Topology Description
Redundant VPN configurations Options for supporting redundant and partially redundant IPsec VPNs, using route-based approaches. See Redundant VPN configurations on page 1.
Transparent mode VPNs In transparent mode, the FortiGate acts as a bridge with all incoming traffic being broadcast back out on all other interfaces. Routing and NAT must be performed on external routers. See Transparent mode VPNs on page 1.
L2TP and IPsec (Microsoft

VPN)

Configure VPN for Microsoft Windows dialup clients using the built in L2TP software. Users do not have to install any See L2TP and IPsec (Microsoft VPN) on page 1.

These sections contain high-level configuration guidelines with cross-references to detailed configuration procedures. If you need more detail to complete a step, select the cross-reference in the step to drill-down to more detail. Return to the original procedure to complete the procedure. For a general overview of how to configure a VPN, see Planning your VPN .

General preparation steps

A VPN configuration defines relationships between the VPN devices and the private hosts, servers, or networks making up the VPN. Configuring a VPN involves gathering and recording the following information. You will need this information to configure the VPN.

  • The private IP addresses of participating hosts, servers, and/or networks. These IP addresses represent the source addresses of traffic that is permitted to pass through the VPN. A IP source address can be an individual IP address, an address range, or a subnet address.
  • The public IP addresses of the VPN end-point interfaces. The VPN devices establish tunnels with each other through these interfaces.
  • The private IP addresses associated with the VPN-device interfaces to the private networks. Computers on the private networks behind the VPN gateways will connect to their VPN gateways through these interfaces.

How to use this guide to configure an IPsec VPN

This guide uses a task-based approach to provide all of the procedures needed to create different types of VPN configurations. Follow the step-by-step configuration procedures in this guide to set up the VPN. The following configuration procedures are common to all IPsec VPNs:

  1. Define the Phase 1 parameters that the FortiGate unit needs to authenticate remote peers or clients and establish a secure a connection. See Phase 1 parameters on page 52.
  2. Define the Phase 2 parameters that the FortiGate unit needs to create a VPN tunnel with a remote peer or dialup client. See Phase 2 parameters on page 72.
  3. Specify the source and destination addresses of IP packets that are to be transported through the VPN tunnel. See Defining policy addresses on page 1.

How to use this guide to configure an IPsec VPN                                                                         IPsec VPN overview

  1. Create an IPsec security policy to define the scope of permitted services between the IP source and destination addresses. See Defining VPN security policies on page 1.

These steps assume you configure the FortiGate unit to generate unique IPsec encryption and authentication keys automatically. In situations where a remote VPN peer or client requires a specific IPsec encryption and authentication key, you must configure the FortiGate unit to use manual keys instead of performing Steps 1 and 2.

 

IPsec VPN concepts

IPsec VPN concepts

Virtual Private Network (VPN) technology enables remote users to connect to private computer networks to gain access to their resources in a secure way. For example, an employee traveling or working from home can use a VPN to securely access the office network through the Internet.

Instead of remotely logging on to a private network using an unencrypted and unsecure Internet connection, the use of a VPN ensures that unauthorized parties cannot access the office network and cannot intercept any of the information that is exchanged between the employee and the office. It is also common to use a VPN to connect the private networks of two or more offices.

Fortinet offers VPN capabilities in the FortiGate Unified Threat Management (UTM) appliance and in the

FortiClient Endpoint Security suite of applications. A FortiGate unit can be installed on a private network, and FortiClient software can be installed on the user’s computer. It is also possible to use a FortiGate unit to connect to the private network instead of using FortiClient software.

This chapter discusses VPN terms and concepts including:

VPN tunnels

VPN gateways

Clients, servers, and peers

Encryption

Authentication

Phase 1 and Phase 2 settings

IKE and IPsec packet processing

VPN tunnels

The data path between a user’s computer and a private network through a VPN is referred to as a tunnel. Like a physical tunnel, the data path is accessible only at both ends. In the telecommuting scenario, the tunnel runs between the FortiClient application on the user’s PC, or a FortiGate unit or other network device and the FortiGate unit on the office private network.

Encapsulation makes this possible. IPsec packets pass from one end of the tunnel to the other and contain data packets that are exchanged between the local user and the remote private network. Encryption of the data packets ensures that any third-party who intercepts the IPsec packets can not access the data.

VPN tunnels Encoded data going through a VPN tunnel

You can create a VPN tunnel between:

  • A PC equipped with the FortiClient application and a FortiGate unit
  • Two FortiGate units
  • Third-party VPN software and a FortiGate unit

For more information on third-party VPN software, refer to the Fortinet Knowledge Base for more information.

Tunnel templates

Several tunnel templates are available in the IPsec VPN Wizard that cover a variety of different types of IPsec VPN. A list of these templates appear on the first page of the Wizard, located at VPN > IPsec Wizard. The tunnel template list follows.

IPsec VPN Wizard options

VPN Type Remote Device Type NAT Options Description
Site to Site FortiGate l   No NAT between sites

l   This site is behind NAT

l   The remote site is behind NAT

Static tunnel between this FortiGate and a remote FortiGate.
Cisco l   No NAT between sites

l   This site is behind NAT

l   The remote site is behind NAT

Static tunnel between this FortiGate and a remote Cisco firewall.

VPN gateways

VPN Type Remote Device Type NAT Options Description
Remote Access FortiClient VPN for OS X, Windows, and Android N/A On-demand tunnel for users using the FortiClient software.
iOS Native N/A On-demand tunnel for iPhone/iPad users using the native iOS IPsec client.
Android Native N/A On-demand tunnel for Android users using the native L2TP/IPsec client.
Windows Native N/A On-demand tunnel for Android users using the native L2TP/IPsec client.
Cisco AnyConnect N/A On-demand tunnel for users using the Cisco IPsec client.
Custom N/A N/A No Template.

VPN tunnel list

Once you create an IPsec VPN tunnel, it appears in the VPN tunnel list at VPN > IPsec Tunnels. By default, the tunnel list indicates the name of the tunnel, its interface binding, the tunnel template used, and the tunnel status. If you right-click on the table header row, you can include columns for comments, IKE version, mode (aggressive vs main), phase 2 proposals, and reference number. The tunnel list page also includes the option to create a new tunnel, as well as the options to edit or delete a highlighted tunnel.

FortiView VPN tunnel map

A geospatial map can be found under FortiView > VPN Map to help visualize IPsec (and SSL) VPN connections to a FortiGate using Google Maps. This feature adds a geographical-IP API service for resolving spatial locations from IP addresses.

VPN gateways

A gateway is a router that connects the local network to other networks. The default gateway setting in your computer’s TCP/IP properties specifies the gateway for your local network.

VPN gateways

A VPN gateway functions as one end of a VPN tunnel. It receives incoming IPsec packets, decrypts the encapsulated data packets and passes the data packets to the local network. Also, it encrypts data packets destined for the other end of the VPN tunnel, encapsulates them, and sends the IPsec packets to the other VPN gateway. The VPN gateway is a FortiGate unit because the private network behind it is protected, ensuring the security of the unencrypted VPN data. The gateway can also be FortiClient software running on a PC since the unencrypted data is secure on the PC.

The IP address of a VPN gateway is usually the IP address of the network interface that connects to the Internet. Optionally, you can define a secondary IP address for the interface and use that address as the local VPN gateway address. The benefit of doing this is that your existing setup is not affected by the VPN settings.

The following diagram shows a VPN connection between two private networks with FortiGate units acting as the VPN gateways. This configuration is commonly referred to as Gateway-to-Gateway IPsec VPN.

VPN tunnel between two private networks

Although the IPsec traffic may actually pass through many Internet routers, you can visualize the VPN tunnel as a simple secure connection between the two FortiGate units.

Users on the two private networks do not need to be aware of the VPN tunnel. The applications on their computers generate packets with the appropriate source and destination addresses, as they normally do. The FortiGate units manage all the details of encrypting, encapsulating, and sending the packets to the remote VPN gateway.

The data is encapsulated in IPsec packets only in the VPN tunnel between the two VPN gateways. Between the user’s computer and the gateway, the data is on the secure private network and it is in regular IP packets.

For example User1 on the Site  A network, at IP address 10.10.1.7, sends packets with destination IP address 192.168.10.8, the address of User2 on the Site B network. The Site A FortiGate unit is configured to send packets with destinations on the 192.168.10.0 network through the VPN, encrypted and encapsulated. Similarly, the Site Clients, servers, and peers

B FortiGate unit is configured to send packets with destinations on the 10.10.1.0 network through the VPN tunnel to the Site A VPN gateway.

In the site-to-site, or gateway-to-gateway VPN shown below, the FortiGate units have static (fixed) IP addresses and either unit can initiate communication.

You can also create a VPN tunnel between an individual PC running FortiClient and a FortiGate unit, as shown below. This is commonly referred to as Client-to-Gateway IPsec VPN.

VPN tunnel between a FortiClient PC and a FortiGate unit

On the PC, the FortiClient application acts as the local VPN gateway. Packets destined for the office network are encrypted, encapsulated into IPsec packets, and sent through the VPN tunnel to the FortiGate unit. Packets for other destinations are routed to the Internet as usual. IPsec packets arriving through the tunnel are decrypted to recover the original IP packets.

Clients, servers, and peers

A FortiGate unit in a VPN can have one of the following roles:

  • Server — responds to a request to establish a VPN tunnel.
  • Client — contacts a remote VPN gateway and requests a VPN tunnel. l Peer — brings up a VPN tunnel or responds to a request to do so.

The site-to-site VPN shown above is a peer-to-peer relationship. Either FortiGate unit VPN gateway can establish the tunnel and initiate communications. The FortiClient-to-FortiGate VPN shown below is a client-server relationship. The FortiGate unit establishes a tunnel when the FortiClient PC requests one.

Encryption

A FortiGate unit cannot be a VPN server if it has a dynamically-assigned IP address. VPN clients need to be configured with a static IP address for the server. A FortiGate unit acts as a server only when the remote VPN gateway has a dynamic IP address or is a client-only device or application, such as FortiClient.

As a VPN server, a FortiGate unit can also offer automatic configuration for FortiClient PCs. The user needs to know only the IP address of the FortiGate VPN server and a valid user name/password. FortiClient downloads the VPN configuration settings from the FortiGate VPN server. For information about configuring a FortiGate unit as a VPN server, see the FortiClient Administration Guide.

Encryption

Encryption mathematically transforms data to appear as meaningless random numbers. The original data is called plaintext and the encrypted data is called ciphertext. The opposite process, called decryption, performs the inverse operation to recover the original plaintext from the ciphertext.

The process by which the plaintext is transformed to ciphertext and back again is called an algorithm. All algorithms use a small piece of information, a key, in the arithmetic process of converted plaintext to ciphertext, or vice-versa. IPsec uses symmetrical algorithms, in which the same key is used to both encrypt and decrypt the data. The security of an encryption algorithm is determined by the length of the key that it uses. FortiGate IPsec VPNs offer the following encryption algorithms, in descending order of security:

Encryption Description
AES-GCM Galois/Counter Mode (GCM), a block cipher mode of operation providing both confidentiality and data origin authentication.
AES256 A 128-bit block algorithm that uses a 256-bit key.
AES192 A 128-bit block algorithm that uses a 192-bit key.
AES128 A 128-bit block algorithm that uses a 128-bit key.
3DES Triple-DES, in which plain text is DES-encrypted three times by three keys.
DES Digital Encryption Standard, a 64-bit block algorithm that uses a 56-bit key

The default encryption algorithms provided on FortiGate units make recovery of encrypted data almost impossible without the proper encryption keys.

There is a human factor in the security of encryption. The key must be kept secret, known only to the sender and receiver of the messages. Also, the key must not be something that unauthorized parties might easily guess, such as the sender’s name, birthday or simple sequence such as 123456.

Diffie-Hellman groups

FortiOS IPsec VPN supports the following Diffie-Hellman (DH) asymmetric key algorithms for public key cryptography.

Encryption

DH Group Description
1 More Modular Exponential (MODP) DH Group with a 768-bit modulus.
2 MODP with a 1024-bit modulus.
5 MODP with a 1536-bit modulus.
14 MODP with a 2048-bit modulus.
15 MODP with a 3027-bit modulus.
16 MODP with a 4096-bit modulus.
17 MODP with a 6144-bit modulus.
18 MODP with a 8192-bit modulus.
19 256-bit random elliptic curve group.
20 384-bit random elliptic curve group.
21 521-bit random elliptic curve group.
27 Brainpool 224-bit elliptic curve group.
28 Brainpool 256-bit elliptic curve group.
29 Brainpool 384-bit elliptic curve group.
30 Brainpool 512-bit elliptic curve group.

* When using aggressive mode, DH groups cannot be negotiated.

By default, DH group 14 is selected, to provide sufficient protection for stronger cipher suites that include AES and SHA2. If you select multiple DH groups, the order they appear in the configuration is the order in which they are negotiates.

If both VPN peers (or a VPN server and its client) have static IP addresses and use aggressive mode, select a single DH group. The setting on the FortiGate unit must be identical to the setting on the remote peer or dialup client.

When the remote VPN peer or client has a dynamic IP address and uses aggressive mode, select up to three DH groups on the FortiGate unit and one DH group on the remote peer or dialup client. The setting on the remote peer or dialup client must be identical to one of the selections on the FortiGate unit.

If the VPN peer or client employs main mode, you can select multiple DH groups. At least one of the settings on the remote peer or dialup client must be identical to the selections on the FortiGate unit.

Authentication

IPsec overheads

The FortiGate sets an IPsec tunnel Maximum Transmission Unit (MTU) of 1436 for 3DES/SHA1 and an MTU of 1412 for AES128/SHA1, as seen with diag vpn tunnel list. This indicates that the FortiGate allocates 64 bytes of overhead for 3DES/SHA1 and 88 bytes for AES128/SHA1, which is the difference if you subtract this MTU from a typical ethernet MTU of 1500 bytes.

During the encryption process, AES/DES operates using a specific size of data which is block size. If data is smaller than that, it will be padded for the operation. MD5/SHA-1 HMAC also operates using a specific block size.

The following table describes the potential maximum overhead for each IPsec encryption:

IPsec Transform Set IPsec Overhead (Max. bytes)
ESP-AES (256, 192, or 128),ESP-SHA-HMAC, or MD5 73
ESP-AES (256, 192, or 128) 61
ESP-3DES, ESP-DES 45
ESP-(DES or 3DES), ESP-SHA-HMAC, or MD5 57
ESP-Null, ESP-SHA-HMAC, or MD5 45
AH-SHA-HMAC or MD5 44

Authentication

To protect data via encryption, a VPN must ensure that only authorized users can access the private network. You must use either a preshared key on both VPN gateways or RSA X.509 security certificates. The examples in this guide use only preshared key authentication. Refer to the Fortinet Knowledge Base for articles on RSA X.509 security certificates.

Preshared keys

A preshared key contains at least six random alphanumeric characters. Users of the VPN must obtain the preshared key from the person who manages the VPN server and add the preshared key to their VPN client configuration.

Although it looks like a password, the preshared key, also known as a shared secret, is never sent by either gateway. The preshared key is used in the calculations at each end that generate the encryption keys. As soon as the VPN peers attempt to exchange encrypted data, preshared keys that do not match will cause the process to fail.

Additional authentication

To increase security, you can require additional means of authentication from users, such as:

Phase 1 and Phase 2 settings

  • An identifier, called a peer ID or a local ID.
  • Extended authentication (XAUTH) which imposes an additional user name/password requirement.

A Local ID is an alphanumeric value assigned in the Phase 1 configuration. The Local ID of a peer is called a Peer

ID.

In FortiOS 5.2, new authentication methods have been implemented for IKE: ECDSA-256, ECDSA-384, and ECDSA-521. However, AES-XCBC is not supported.

Phase 1 and Phase 2 settings

A VPN tunnel is established in two phases: Phase 1 and Phase 2. Several parameters determine how this is done. Except for IP addresses, the settings simply need to match at both VPN gateways. There are defaults that are appropriate for most cases.

FortiClient distinguishes between Phase 1 and Phase 2 only in the VPN Advanced settings and uses different terms. Phase 1 is called the IKE Policy. Phase 2 is called the IPsec Policy.

Phase 1

In Phase 1, the two VPN gateways exchange information about the encryption algorithms that they support and then establish a temporary secure connection to exchange authentication information.

When you configure your FortiGate unit or FortiClient application, you must specify the following settings for Phase 1:

Remote gateway The remote VPN gateway’s address.

FortiGate units also have the option of operating only as a server by selecting the “Dialup User” option.

Preshared key This must be the same at both ends. It is used to encrypt Phase 1 authentication information.
Local interface The network interface that connects to the other VPN gateway. This applies on a FortiGate unit only.

All other Phase 1 settings have default values. These settings mainly configure the types of encryption to be used. The default settings on FortiGate units and in the FortiClient application are compatible. The examples in this guide use these defaults.

For more detailed information about Phase 1 settings, see Phase 1 parameters on page 52.

Phase 2

Similar to the Phase 1 process, the two VPN gateways exchange information about the encryption algorithms that they support for Phase 2. You may choose different encryption for Phase 1 and Phase 2. If both gateways have at least one encryption algorithm in common, a VPN tunnel can be established. Keep in mind that more algorithms each phase does not share with the other gateway, the longer negotiations will take. In extreme cases this may cause timeouts during negotiations.

 

To configure default Phase 2 settings on a FortiGate unit, you need only select the name of the corresponding Phase 1 configuration. In FortiClient, no action is required to enable default Phase 2 settings.

For more detailed information about Phase 2 settings, see Phase 2 parameters on page 72.

Security Association

The establishment of a Security Association (SA) is the successful outcome of Phase 1 negotiations. Each peer maintains a database of information about VPN connections. The information in each SA can include cryptographic algorithms and keys, keylife, and the current packet sequence number. This information is kept synchronized as the VPN operates. Each SA has a Security Parameter Index (SPI) that is provided to the remote peer at the time the SA is established. Subsequent IPsec packets from the peer always reference the relevant SPI. It is possible for peers to have multiple VPNs active simultaneously, and correspondingly multiple SPIs.

The IPsec SA connect message generated is used to install dynamic selectors. These selectors can be installed via the auto-negotiate mechanism. When phase 2 has auto-negotiate enabled, and phase 1 has mesh selectortype set to subnet, a new dynamic selector will be installed for each combination of source and destination subnets. Each dynamic selector will inherit the auto-negotiate option from the template selector and begin SA negotiation. Phase 2 selector sources from dial-up clients will all establish SAs without traffic being initiated from the client subnets to the hub.

Remote IP address change detection

SAs are stored in a hash table when keyed off the IPsec SA SPI value. This enables the FortiGate, for each inbound ESP packet received, to immediately look up the SA and compare the stored IP address against the one in the incoming packet. If the incoming and stored IP addresses differ, an IP address change can be made in the kernel SA, and an update event can be triggered for IKE.

IKE and IPsec packet processing

Internet Key Exchange (IKE) is the protocol used to set up SAs in IPsec negotiation. As described in Phase 1 parameters on page 52, you can optionally choose IKEv2 over IKEv1 if you configure a route-based IPsec VPN. IKEv2 simplifies the negotiation process, in that it provides no choice of Aggressive or Main mode in Phase 1. IKEv2 also uses less bandwidth.

The following sections identify how IKE versions 1 and 2 operate and differentiate.

IKEv1

Phase 1

A peer, identified in the IPsec policy configuration, begins the IKE negotiation process. This IKE Security Association (SA) agreement is known as Phase 1. The Phase 1 parameters identify the remote peer or clients and supports authentication through pre-shared key (PSK) or digital certificate. You can increase access security further using peer identifiers, certificate distinguished names, group names, or the FortiGate extended authentication (XAuth) option for authentication purposes. Basically, Phase 1 authenticates a remote peer and sets up a secure communication channel for establishing Phase 2, which negotiates the IPsec SA.

IKE and IPsec packet processing

IKE Phase 1 can occur in either Main mode or Aggressive mode. For more information, see  Phase 1 parameters on page 52.

IKE Phase 1 is successful only when the following are true:

  • Each peer negotiates a matching IKE SA policy.
  • Each peer is authenticated and their identities protected.
  • The Diffie-Hellman exchange is authenticated (the pre-shared secret keys match).

For more information on Phase 1, see Phase 1 parameters on page 52.

Phase 2

Phase 2 parameters define the algorithms that the FortiGate unit can use to encrypt and transfer data for the remainder of the session in an IPsec SA. The basic Phase 2 settings associate IPsec Phase 2 parameters with a Phase 1 configuration.

In Phase 2, the VPN peer or client and the FortiGate unit exchange keys again to establish a more secure communication channel. The Phase 2 Proposal parameters select the encryption and authentication algorithms needed to generate keys for protecting the implementation details of the SA. The keys are generated automatically using a Diffie-Hellman algorithm.

In Phase 2, Quick mode selectors determine which IP addresses can perform IKE negotiations to establish a tunnel. By only allowing authorized IP addresses access to the VPN tunnel, the network is more secure. For more information, see Phase 2 parameters on page 72.

IKE Phase 2 is successful only when the following are true:

  • The IPsec SA is established and protected by the IKE SA.
  • The IPsec SA is configured to renegotiate after set durations (see Phase 2 parameters on page 72 and Phase 2 parameters on page 72).
  • Optional: Replay Detection is enabled. Replay attacks occur when an unauthorized party intercepts a series of IPsec packets and replays them back into the tunnel. See Phase 2 parameters on page 72.
  • Optional: Perfect Forward Secrecy (PFS) is enabled. PFS improves security by forcing a new Diffie-Hellman exchange whenever keylife expires. See Phase 2 parameters on page 72.

For more information on Phase 2, see Phase 2 parameters on page 72.

With Phase 2 established, the IPsec tunnel is fully negotiated and traffic between the peers is allowed until the SA terminates (for any number of reasons; time-out, interruption, disconnection, etc).

The entire IKEv1 process is demonstrated in the following diagram:

IKEv2

Phase 1

Unlike Phase 1 of IKEv1, IKEv2 does not provide options for Aggressive or Main mode. Furthermore, Phase 1 of IKEv2 begins immediately with an IKE SA initiation, consisting of only two packets (containing all the information typically contained in four packets for IKEv1), securing the channel such that all following transactions are encrypted (see Phase 1 parameters on page 52).

The encrypted transactions contain the IKE authentication, since remote peers have yet to be authenticated. This stage of IKE authentication in IKEv2 can loosely be called Phase 1.5.

Phase 1.5

As part of this phase, IKE authentication must occur. IKE authentication consists of the following:

  • The authentication payloads and Internet Security Association and Key Management Protocol (ISAKMP) identifier.
  • The authentication method (RSA, PSK, ECDSA, or EAP). l The IPsec SA parameters.

Due to the number of authentication methods potentially used, and SAs established, the overall IKEv2 negotiation can range from 4 packets (no EAP exchange at all) to many more.

At this point, both peers have a security association complete and ready to encrypt traffic.

IKE and IPsec packet processing

Phase 2

In IKEv1, Phase 2 uses Quick mode to negotiate an IPsec SA between peers. In IKEv2, since the IPsec SA is already established, Phase 2 is essentially only used to negotiate “child” SAs, or to re-key an IPsec SA. That said, there are only two packets for each exchange of this type, similar to the exchange at the outset of Phase 1.5.

The entire IKEv2 process is demonstrated in the following diagram:

Support for IKEv2 session resumption

If a gateway loses connectivity to the network, clients can attempt to re-establish the lost session by presenting the ticket to the gateway (as described in RFC 5723). As a result, sessions can be resumed much faster, as DH exchange that is necessary to establish a brand new connection is skipped. This feature implements “ticket-byvalue”, whereby all information necessary to restore the state of a particular IKE SA is stored in the ticket and sent to the client.

IKEv2 asymmetric authentication

Asymmetric authentication allows both sides of an authentication exchange to use different authentication methods, for example the initiator may be using a shared key, while the responder may have a public signature key and certificate.

The command authmethod-remote is avilable under config vpn ipsec phase1-interface.

For more detailed information on authentication of the IKE SA, see RFC 5996 Internet Key Exchange Protocol Version 2 (IKEv2).

IKEv2 Digital Signature Authentication support

FortiOS supports the use of Digital Signature authentication, which changes the format of the Authentication Data payload in order to support different signature methods.

Instead of just  containing a raw signature value calculated as defined in the original IKE RFCs,  the Auth Data now includes an ASN.1 formatted object that provides  details on how the signature was calculated, such as the signature type, hash algorithm, and signature padding method.

For more detailed information on IKEv2 Digital Signature authentication, see RFC 7427 Signature Authentication in the Internet Key Exchange Version 2 (IKEv2).

Unique IKE identifiers

When enabled, the following phase1 CLI command (enforce-unique-id) requires all IPsec VPN clients to use a unique identifer when connecting.

CLI syntax

config vpn ipsec phase1 edit <name> set enforce-unique-id {keep-new | keep-old | disable} Default is disable. next

end

 

Use keep-new to replace the old connnection if an ID collision is detected on the gateway. Use keep-old to reject the new connection if an ID collision is detected.

IKEv2 ancillary RADIUS group authentication

This feature provides for the IDi information to be extracted from the IKEv2 AUTH exchange and sent to a RADIUS server, along with a fixed password (configurable via CLI only), to perform an additional group authentication step prior to tunnel establishment. The RADIUS server may return framed-IP-address, framed-ipnetmask, and dns-server attributes, which are then applied to the tunnel.

It should be noted, unlike Xauth or EAP, this feature does not perform individual user authentication, but rather treats all users on the gateway as a single group, and authenticates that group with RADIUS using a fixed password. This feature also works with RADIUS accounting, including the phase1 acct-verify option.

Syntax

config vpn ipsec phase1-interface edit <name> set mode-cfg enable set type dynamic set ike-version 2

set group-authentication {enable | disable} set group-authentication-secret <password>

next end

 

What’s new in FortiOS 5.6 IPSec

What’s new in FortiOS 5.6

This chapter describes new IPsec VPN features added to FortiOS 5.6.0 and FortiOS 5.6.1.

FortiOS 5.6.1

These features first appeared in FortiOS 5.6.1.

Support for Brainpool curves specified in RFC 6954 for IKE (412795)

Added support for Brainpool curves specified in RFC 6954 (originally RFC 5639) for IKE. Four new values are added for VPN phase1 and phase2 DH groups.

The allocated transform IDs are 27, 28, 29, 30:

  • 27 – Brainpool 224-Bit Curve
  • 28 – Brainpool 256-Bit Curve
  • 29 – Brainpool 384-Bit Curve
  • 30 – Brainpool 512-Bit Curve

Syntax

config vpn ipsec phase1/phase1-interface edit <name> set dhgrp {1 | 2 | 5 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 27 | 28 | 29 | 30}

next

end

config vpn ipsec phase2/phase2-interface edit <name> set dhgrp {1 | 2 | 5 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 27 | 28 | 29 | 30}

next

end

Removed “exchange-interface-ip” option from “vpn ipsec phase1” (411981)

The command exchange-interface-ip only works for interface-based IPsec VPN (vpn ipsec phase1interface), and so it has been removed from policy-based IPsec VPN (vpn ipsec phase1).

IKEv2 ancillary RADIUS group authentication (406497)

This feature provides for the IDi information to be extracted from the IKEv2 AUTH exchange and sent to a RADIUS server, along with a fixed password configurable via CLI, to perform an additional group authentication step prior to tunnel establishment. The RADIUS server may return framed-IP-address, framed-ip-netmask, and dns-server attributes, which are then applied to the tunnel.

 

5.6.1

It should be noted, unlike Xauth or EAP, this feature does not perform individual user authentication, but rather treats all users on the gateway as a single group, and authenticates that group with RADIUS using a fixed password. This feature also works with RADIUS accounting, including the phase1 acct-verify option.

Syntax

config vpn ipsec phase1-interface edit <name> set mode-cfg enable set type dynamic set ike-version 2

set group-authentication {enable | disable} set group-authentication-secret <password>

next

end

IPsec mode-cfg can assign IPs from firewall address and sharing IP pools (393331)

This feature adds the ability for users to configure assign-IPs from firewall addresses/groups.

Previously, different policies accessing the same network needed to ensure that non-overlapping IP-ranges were assigned to policies to avoid the same IP address being assigned to multiple clients. With this feature, the address name is used to identify an IP pool and different policies can refer to the same IP pool to check for available IPs, thus simplifying the task of avoiding IP conflicts.

Syntax

config vpn ipsec phase1-interface edit <name> set mode-cfg enable set type dynamic

set assign-ip-from {range | dhcp | name} set ipv4-name <name> set ipv6-name <name>

next

end

Improve interface-based dynamic IPsec up/down time (379937)

This feature makes it possible to use a single interface for all instances that spawn via a given phase1. Instead of creating an interface per instance, all traffic will run over the single interface and any routes that need creating will be created on that single interface.

A new CLI option net-device is added in the phase1-interface command sets. The default is disable so that the new feature kicks in for all the new configurations. An upgrade feature will add a set net-device enable for all the existing configurations so that they will keep the old behavior.

Under the new single-interface scheme, instead of relying on routing to guide traffic to the specific instance, all traffic will flow to the specific device and IPsec will need to take care of locating the correct instance for outbound traffic. For this purpose, another new CLI option tunnel-search is created. The option is only available when the above net-device option is set to disable.

There are two options for tunnel-search, corresponding to the two ways to select the tunnel for outbound traffic. One is selectors, meaning selecting a peer using the IPsec selectors (proxy-ids). The other is

5.6.1

nexthop where all the peers use the same default selectors (0/0) while using some routing protocols such as BGP, OSPF, RIPng, etc. to resolve the routing. The default for tunnel-search is selectors.

Syntax

config vpn ipsec phase1-interface edit <name> set net-device {enable | disable} set tunnel-search {selectors | nexthop}

next

end

Hide psksecret option when peertype is dialup (415480)

In aggressive mode and IKEv2, when peertype is dialup, pre-shared key is per-user based. There is no need to configure the psksecret in the phase1 setup. Previously, if left unconfigured, CLI would output psksecret error and fail to create the phase1 profile.

To prevent psksecret length check running on the configuration end, the psksecret option will be hidden. Prior to Mantis 397712, the length check passed because it was incorrectly checking the legnth of encrypted password which is always 204 length long.

Peertype dialup option removed for main mode.

New enforce-ipsec option added to L2TP config (423988)

A new enforce-ipsec option is added in L2TP configuration to force the FortiGate L2TP server to accept only IPsec encrypted connections.

Syntax

config vpn l2tp set eip 50.0.0.100 set sip 50.0.0.1 set status enable

set enforce-ipsec-interface {disable | enable}      (default = disable) set usrgrp <group_name>

end

IPsec VPN Wizard improvements (368069)

Previously, when using wan-load-balance (WLB) feature, and when configuring an IPsec tunnel with the wizard, the setting ‘incoming interface’ list does not contain the wan-load-balance nor the wan2 interface. Disabling the WLB permits the configuration.

The solution in 5.6.1 is as follows:

  • (368069) The IPsec VPN wizard now allows users to select members of virtual-wan-link (VWL) as IPsec phase1interface. Before saving, if the phase1 interface is a VWL member, then the Wizard automatically sets the virtualwan-link as the destination interface in the L2TP policy.
  • (246552) List VPN tunnels for VWL members if VWL is set as the destination interface in policy-based IPsec VPN.

IPsec manual key support removed from GUI (436041)

The majority of customers are not using policy-based IPsec today, and beyond that, very few are using manual key VPN. As a result, the IPsec manual key feature is removed from the GUI; the feature store option is removed as well.

Added GUI support for local-gw when configuring custom IPsec tunnels (423786)

Previously, the local-gw option was not available on the GUI when configuring a custom IPsec tunnel. This feature adds the local-gw setting to the IPsec VPN Edit dialog. The user is able to choose the primary or secondary IP address from the currently selected interface, or specify an ip address manually. Both local-gw and local-gw6 are supported.

Moved the dn-format CLI option from phase1 config to vdom settings (435542)

Previous fix for dn-format didn’t take into account that, at the time isakmp_set_peer_identifier is used, we don’t have a connection and haven’t matched our gateway yet, so we can’t use that to determine the dn-format configuration setting.

The solution was to move the dn-format CLI option from phase1 config to vdom settings. It is renamed to ike-dn-format.

FGT IKE incorrect NAT detection causes ADVPN hub behind VIP to not generate shortcuts (416786)

When ADVPN NAT support was added, only spokes behind NAT was considered. No thought was given to a hub behind a VIP or the problems that occurred due to the way that FortiOS clients behind NAT enable NAT-T even when it is not required.

The solution in 5.6.1 is as follows:

  • Moved shortcut determination out of the kernel and up to IKE. The shortcut message now contains the ID of both tunnels so that IKE can check the NAT condition of both.
  • Added IKE debug to cover sending the initial shortcut query. The lack of this previously meant it could be awkard to determine if the offer had been converted into a query correctly.
  • Added “nat:” output in diag vpn ike gateway list output to indicate whether this device or the peer is behind NAT.
  • Tweaked the diag vpn tunnel list output so that the auto-discovery information now includes symbolic as well as numeric values, which makes it easier to see what type of auto-discovery was enabled.

FortiOS 5.6.0

These features first appeared in FortiOS 5.6.0.

5.6.0

Improvement to stats crypto command output (403995)

The CLI command get vpn ipsec stats crypto now has a better format for the information it shows in differentiating between NP6 lite and SOC3 (CP). To further avoid confusion, all engine’s encryption (encrypted/decrypted) and integrity (generated/validated) information is shown under the same heading, not separate headings.

Improved certificate key size control commands (397883)

Proxy will choose the same SSL key size as the HTTPS server. If the key size from the server is 512, the proxy will choose 1024. If the key size is bigger than 1024, the proxy will choose 2048.

As a result, the firewall ssl-ssh-profile commands certname-rsa, certname-dsa, and certname-ecdsa have been replaced with more specific key size control commands under vpn certificate setting.

CLI syntax

config vpn certificate setting set certname-rsa1024 <name> set certname-rsa2048 <name> set certname-dsa1024 <name> set certname-dsa2048 <name> set certname-ecdsa256 <name> set certname-ecdsa384 <name>

end

Support bit-based keys in IKE (397712)

As per FIPS-CC required standards, as well as RFC 4306, IKE supports pre-shared secrets to be entered as both ASCII string values and as hexadecimal encoded values. This feature parses hex encoded input (indicated by the leading characters 0x) and converts the input into binary data for storage.

With this change, the psksecret and psksecret-remote entries under the IPsec VPN CLI command config vpn ipsec-phase1-interface have been amended to differentiate user input as either ASCII string or hex encoded values.

IKEv2 asymmetric authentication (393073)

Support added for IKEv2 asymmetric authentication, allowing both sides of an authentication exchange to use different authentication methods, for example the initiator may be using a shared key, while the responder may have a public signature key and certificate.

A new command, authmethod-remote, has been added to config vpn ipsec phase1-interface.

For more detailed information on authentication of the IKE SA, see RFC 5996 Internet Key Exchange Protocol Version 2 (IKEv2).

Allow mode-cfg with childless IKEv2 (391567)

An issue that prevented childless-ike from being enabled at the same time as mode-cfg has been resolved. Both options can now be enabled at once under config vpn ipsec phase1-interface.

IKEv2 Digital Signature Authentication support (389001)

FortiOS supports the use of Digital Signature authentication, which changes the format of the Authentication Data payload in order to support different signature methods.

Instead of just  containing a raw signature value calculated as defined in the original IKE RFCs,  the Auth Data now includes an ASN.1 formatted object that provides  details on how the signature was calculated, such as the signature type, hash algorithm, and signature padding method.

For more detailed information on IKEv2 Digital Signature authentication, see RFC 7427 Signature Authentication in the Internet Key Exchange Version 2 (IKEv2).

Passive static IPsec VPN (387913)

New commands have been added to config vpn ipsec phase1-interface to prevent initiating

VPN connection. Static IPsec VPNs can be configured in tunnel mode, without initiating tunnel negotiation or rekey.

To allow a finer configuration of the tunnel, the rekey option is removed from config system global and added to config vpn ipsec phase1-interface.

CLI syntax

config vpn ipsec phase1-interface edit <example> set rekey {enable | disable} set passive-mode {enable | disable} set passive-tunnel-interface {enable | disable}

end

Phase 2 wizard simplified (387725)

Previously, for a site-to-site VPN, phase 2 selectors had their static routes created in the IPsec VPN wizard by adding IP addresses  in string format. Now, since addresses and address groups are already created for these addresses, the address group can be used in the route directly. This means that the route can be modified simply by modifying the address/groups that were created when the VPN was initially created.

With this change, the VPN wizard will create less objects internally, and reduce complexity.

In addition, a blackhole route route will be created by default with a higher distance-weight set than the default route. This is to prevent traffic from flowing out of another route if the VPN interface goes down. In these instances, the traffic will instead be silently discarded.

Unique IKE ID enforcement (383296)

All IPsec VPN peers now connect with unique IKE identifiers. To implement this, a new phase1 CLI command has been added (enforce-unique-id) which, when enabled, requires all IPsec VPN clients to use a unique identifier when connecting.

CLI syntax

config vpn ipsec phase1 edit <name>

5.6.0

set enforce-unique-id {keep-new | keep-old | disable} Default is disable. next

end

 

Use keep-new to replace the old connection if an ID collision is detected on the gateway. Use keep-old to reject the new connection if an ID collision is detected.

FortiView VPN tunnel map feature (382767)

A geospatial map has been added to FortiView to help visualize IPsec and SSL VPN connections to a FortiGate using Google Maps. Adds geographical-IP API service for resolving spatial locations from IP addresses.

This feature can be found under FortiView > VPN.

Childless IKEv2 initiation (381650)

As documented in RFC 6023, when both sides support the feature, no child IPsec SA is brought up during the initial AUTH of the IKEv2 negotiation. Support for this mode is not actually negotiated, but the responder indicates support for it by including a CHILDLESS_IKEV2_SUPPORTED Notify in the initial SA_INIT reply. The initiator is then free to send its AUTH without any SA or TS payloads if it also supports this extension.

CLI syntax

config vpn ipsec phase1-interface edit ike set ike-version 2 set childless-ike enable

next

end

Due to the way configuration payloads (IKEV2_PAYLOAD_CONFIG) are handled in the current code base, mode-cfg and childless-ike aren’t allowed to be enabled at the same time. Processing config payloads for mode-cfg requires a child ph2handle to be created, but with childless-ike we completely avoid creating the child ph2 in the first place which makes the two features incompatible. It may be possible to support both in the future, but a deeper rework of the config payload handling is required.

Allow peertype dialup for IKEv2 pre-shared key dynamic phase1 (378714)

Restored peertype dialup that was removed in a previous build (when IKEv2 PSK gateway re-validation was not yet supported).

If peertype is dialup, IKEv2 AUTH verify uses user password in the user group “usrgrp” of phase1. The “psksecret” in phase1 is ignored.

CLI syntax

config vpn ipsec phase1-interface edit “name” set type dynamic set interface “wan1” set ike-version 2 set peertype dialup

set usrgrp “local-group”

next

end

IPsec default phase1/phase1-interface peertype changed from ‘any’ to ‘peer’ (376340)

Previously, when authmethod was changed to signature, peertype automatically changed to peer and required a peer to be set. This change was done to try to provide a more secure initial configuration, while allowing the admin to set peertype back to any if that’s what they really wanted. The default value was kept at any in the CLI. However, this caused problems with copy/pasting configurations and with FMG because if peertype any wasn’t explicitly provided, the CLI was switched to peertype peer.

This patch changes the default peertype to peer now; peertype any is considered non-default and will be printed out on any config listing. Upgrade code has been written to ensure that any older build that was implicitly using set peertype any has this setting preserved.

IPsec GUI bug fixes (374326)

Accept type “Any peer ID” is available when creating IPsec tunnel with authmethod, pre-shared key, ikev1 main mode/aggressive mode, and ikev2.

Support for IKEv2 Message Fragmentation (371241)

Added support for IKEv2 Message Fragmentation, as described in RFC 7383.

Previously, when sending and IKE packets with IKEv1, the whole packet is sent once, and it is only fragmented if there is a retransmission. With IKEv2, because RFC 7383 requires each fragment to be individually encrypted and authenticated, we would have to keep a copy of the unencrypted payloads around for each outgoing packet, in case the original single packet was never answered and we wanted to retry with fragments. So with this implementation, if the IKE payloads are greater than a configured threshold, the IKE packets are preemptively fragmented and encrypted.

CLI syntax

config vpn ipsec phase1-interface edit ike set ike-version 2

set fragmentation [enable|disable] set fragmentation-mtu [500-16000]

next

end

IPsec monitoring pages now based on phase 1 proposals not phase 2 (304246)

The IPsec monitor, found under Monitor > IPsec Monitor, was in some instances showing random uptimes even if the tunnel was in fact down.

Tunnels are considered as “up” if at least one phase 2 selector is active. To avoid confusion, when a tunnel is down, IPsec Monitor will keep the Phase 2 Selectors column, but hide it by default and be replaced with Phase 1 status column.

 

FortiOS 5.6 IPSec VPN Introduction

Introduction

This  FortiOS Handbook chapter contains the following sections:

IPsec VPN concepts explains the basic concepts that you need to understand about virtual private networks (VPNs).

IPsec VPN overview provides a brief overview of IPsec technology and includes general information about how to configure IPsec VPNs using this guide.

IPsec VPN in the web-based manager describes the IPsec VPN menu of the web-based manager interface.

Gateway-to-gateway configurations  explains how to set up a basic gateway-to-gateway (site-to-site) IPsec VPN. In a gateway-to-gateway configuration, two FortiGate units create a VPN tunnel between two separate private networks.

Hub-and-spoke configurations describes how to set up hub-and-spoke IPsec VPNs. In a hub-and-spoke configuration, connections to a number of remote peers and/or clients radiate from a single, central FortiGate hub.

Dynamic DNS configuration describes how to configure a site-to-site VPN, in which one FortiGate unit has a static IP address and the other FortiGate unit has a dynamic IP address and a domain name.

FortiClient dialup-client configurations guides you through configuring a FortiClient dialup-client IPsec VPN. In a FortiClient dialup-client configuration, the FortiGate unit acts as a dialup server and VPN client functionality is provided by the FortiClient Endpoint Security application installed on a remote host.

FortiGate dialup-client configurations  explains how to set up a FortiGate dialup-client IPsec VPN. In a FortiGate dialup-client configuration, a FortiGate unit with a static IP address acts as a dialup server and a FortiGate unit with a dynamic IP address initiates a VPN tunnel with the FortiGate dialup server.

Supporting IKE Mode config clients explains how to set up a FortiGate unit as either an IKE Mode Config server or client. IKE Mode Config is an alternative to DHCP over IPsec.

Internet-browsing configuration explains how to support secure web browsing performed by dialup VPN clients, and hosts behind a remote VPN peer. Remote users can access the private network behind the local FortiGate unit and browse the Internet securely. All traffic generated remotely is subject to the security policy that controls traffic on the private network behind the local FortiGate unit.

Redundant VPN configurations discusses the options for supporting redundant and partially redundant tunnels in an IPsec VPN configuration. A FortiGate unit can be configured to support redundant tunnels to the same remote peer if the FortiGate unit has more than one interface to the Internet.

Transparent mode VPNs describes two FortiGate units that create a VPN tunnel between two separate private networks transparently. In transparent mode, all FortiGate unit interfaces except the management interface are invisible at the network layer.

IPv6 IPsec VPNs describes FortiGate unit VPN capabilities for networks based on IPv6 addressing. This includes IPv4-over-IPv6 and IPv6-over-IPv4 tunnelling configurations. IPv6 IPsec VPNs are available in FortiOS 3.0 MR5 and later.

L2TP and IPsec (Microsoft VPN) explains how to support Microsoft Windows native VPN clients.

Introduction

GRE over IPsec (Cisco VPN) explains how to interoperate with Cisco VPNs that use Generic Routing Encapsulation (GRE) protocol with IPsec.

Protecting OSPF with IPsec provides an example of protecting OSPF links with IPsec.

Redundant OSPF routing over IPsec provides an example of  redundant secure communication between two remote networks using an OSPF VPN connection.

OSPF over dynamic IPsec provides an example of  how to create a dynamic IPsec VPN tunnel that allows OSPF.

BGP over dynamic IPsec provides an example of how to create a dynamic IPsec VPN tunnel that allows BGP.

Phase 1 parameters provides detailed step-by-step procedures for configuring a FortiGate unit to accept a connection from a remote peer or dialup client. The basic Phase 1 parameters identify the remote peer or clients and support authentication through preshared keys or digital certificates. You can increase VPN connection security further using methods such as extended authentication (XAuth).

Phase 2 parameters provides detailed step-by-step procedures for configuring an IPsec VPN tunnel. During Phase 2, the specific IPsec security associations needed to implement security services are selected and a tunnel is established.

Defining VPN security policies explains how to specify the source and destination IP addresses of traffic transmitted through an IPsec VPN tunnel, and how to define a security encryption policy. Security policies control all IP traffic passing between a source address and a destination address.

Logging and monitoring and Troubleshooting provide VPN monitoring and troubleshooting procedures.

FortiCarrier Troubleshooting

Troubleshooting

This section offers troubleshooting options for Carrier-related issues.

This section includes:

FortiOS Carrier diagnose commands

Applying IPS signatures to IP packets within GTP-U tunnels

GTP packets are not moving along your network

FortiOS Carrier diagnose commands

This section includes diagnose commands specific to FortiOS Carrier features such as GTP.

GTP related diagnose commands

This CLI command allows you to gain information on GTP packets, logs, statistics, and other information.

diag firewall gtp <command>

apn list <gtp_profile> The APN list entries in the specified GTP profile
auth-ggsns show <gtp_profile> The authorized GGSNs entries for the specified GTP profile. Any GGSNs not on this list will not be recognized.
auth-sgsns show <gtp_profile> The authorized SGSNs list entries for the specified GTP profile. Any SGSNs not on this list will not be recognized.
handover-grp show <gtp_

profile>

The handover group showing the range of allowed handover group IP addresses. The handover group acts like a white list of allowed GTP addresses with a default deny at the end — if the GTP address is not on the list, it is denied.
ie-remove-policy list <gtp_ profile> List of IE policies in the IE removal policy for this GTP profile. The information displayed includes the message count for this policy, the length of the SGSN, the list of IEs, and list of SGSN IP addresses.
imsi list <gtp_profile> IMSI filter entries for this GTP profile. The information displayed includes the message count for this filter, length of the IMSI, the length of the APN and IMSI, and of course the IMSI and APN values.
invalid-sgsns-to-long list <gtp_ profile> List of SGSNs that do not match the filter criteria. These SGSNs will be logged.
ip-policy list <gtp_profile> List the IP policies including message count for each policy, the action to take, the source and destination IP addresses or ranges, and masks.

Applying IPS signatures to IP packets within GTP-U tunnels

noip-policy <gtp_profile> List the non-IP policies including the message count, which mode, the action to take, and the start and end protocols to be used by decimal number.
path {list | flush} Select list or flush.

List the GTP related paths in FortiOS Carrier memory.

Flush the GTP related paths from memory.

policy list <gtp_policy> The GTP advanced filter policy information for this GTP profile. The information displayed for each entry includes a count for messages matching this filter, a hexidecimal mask of which message types to match, the associated flags, action to take on a match, APN selection mode, MSISDN, RAT types, RAI, ULI, and IMEI.
profile list Displays information about the configured GTP profiles.

You will not be able to see the bulk of the information if you do not log the output to a file.

runtime-stat flush Select to flush the GTP runtime statistics from memory.
stat Display the GTP runtime statistics — details on current GTP activity. This information includes how many tunnels are active, how many GTP profiles exist, how many IMSI filter entries, how many APN filter entries, advanced policy filter entries, IE remove policy filter entries, IP policy filter entries, clashes, and dropped packets.
tunnel {list | flush} Select one of list or flush.

List lists all the GTP tunnels currently active.

Flush clears the list of active GTP tunnels. This does not clear the clash counter displayed in the stat command.

Applying IPS signatures to IP packets within GTP-U tunnels

GTP-U (GTP user data tunnelling) tunnels carry user data packets, signaling messages and error information. GTP-U uses UDP port 2152. Carrier-enabled FortiGate units can apply IPS intrusion protection and detection to GTP-U user data sessions.

To apply IPS to GTP-U user data sessions, add an IPS Sensor to a profile and add the profile to a security policy that accepts GTP-U tunnels. The security policy Service field must be set to GTP or ANY to accept GTP-U packets.

The Carrier-enabled FortiGate unit intercepts packets with destination port 2152, removes the GTP header and handles the packets as regular IP packets. Applying an IPS sensor to the IP packets, the Carrier-enabled FortiGate unit can log attacks and pass or drop packets depending on the configuration of the sensor.

If the packet is GTP-in-GTP, or a nested tunnel, the packets are passed or blocked without being inspected.

To apply an IPS sensor to GTP-U tunnels

  1. Go to Security Profiles > Intrusion Protection and select Create New (+) to add an IPS Sensor.
  2. Configure the IPS Sensor to detect attacks and log, drop, or pass attack packets. See the Intrusion Protection section of the FortiOS UTM Guide.
  3. Go to Policy & Objects > IPv4 Policy and apply the IPS sensor to the security policy.
  4. Go to Policy & Objects > IPv4 Policy and select Create New to add a security policy or select a security policy.
  5. Configure the security policy to accept GTP traffic.

In the security policy configure the source and destination settings to match the GTP traffic. Service to GTP or ANY so that the security policy accepts GTP traffic.

  1. Select the GTP profile within the security policy.
  2. Configure any other required security policy settings.
  3. Select OK to save the security policy.

GTP packets are not moving along your network

When GTP packets are not getting to their destination, this could be caused by any one of a number of issues. General troubleshooting principals apply here.

The following sections provide some suggestions on how to troubleshoot this issue:

  • Attempt to identify the section of your network with the problem l Ensure you have an APN configured l Check the logs and adjust their settings if required l Check the routing table l Perform a sniffer trace
  • Generate specific packets to test the network

Attempt to identify the section of your network with the problem

The first step is to determine how widespread this problem is. Does it affect the whole GPRS network, or just one or two devices?

If the entire network is has this problem, the solution is likely a more general one such as ensuring the security policies allow GTP traffic to pass, the GTP profile specifies SSGNs and GSGNs, or ensuring the GTP general settings are not overly limiting.

If one part of the network is affected, the problem is more likely centered around configurations with those network devices specified such as the handover group, or authorized SGSNs/GGSNs. It is also possible that small portions of the network may have hardware related issues such as cabling or faulty hardware. This section does not address those issues, and assumes hardware is not the problem.

The handover group is a white list of GTP addresses allowed to handle GTP messages. If a device’s address is not on this list, it will be denied.

GTP packets are not moving along your network

Ensure you have an APN configured

When you configure your GTP profile, ensure you first configure the APN. Without it, there will be no flow of traffic. The APN is used in nearly all GTP communications and without it, the Carrier-enabled FortiGate unit doesn’t have the information it needs.

Check the logs and adjust their settings if required

During normal operation, the log settings will show any problems on the network but may not provide the level of details required to fully troubleshoot the problem. The reason for this is that the level of detail required for troubleshooting would quickly overwhelm the daily logs without any real benefit.

GTP related events in the event log will have message IDs in the range 41216 to 41222. For more information on GTP log messages, see the Log Message Reference. For more information on logging in general, see the Logging and Reporting guide.

Once there is a problem to troubleshoot, check the logs to trace the traffic patterns and narrow down the possible sources of the problem. There may be enough detail for you to locate and fix the problem without changing the log settings.

Remember to set any changes you made to the log settings back to their original values when you are done troubleshooting. Otherwise, the amount of detail will overwhelm your logging.

However, if more detail is required you can change settings such as:

  • Lower the Log Frequency number in GTP Profiles so fewer or no log messages are dropped. This will allow a more accurate picture of everything happening on the network, where you may have had only a partial picture before.
  • Ensure all the GTP log events are enabled to provide you with a complete picture. l Ensure that all relevant event types are enabled under Log & Report > Log Config > Log Settings.

For more information on GTP related logging, see Logging events on the Carrier-enabled FortiGate unit.

General information to look for in the logs includes:

  • Are all packets having problems or just certain types? l Are all devices on the network having problem, or just certain devices? l Is it just GTP traffic that is having problems or are all types of traffic having the same problem?

Check the routing table

On any network, the routing table determines how packets reach their destination. This is also true on a carrier network.

If the Carrier-enabled FortiGate unit is running in NAT mode, verify that all desired routes are in the routing table — local subnets, default routes, specific static routes, and dynamic routing protocols. For complete information, it is best to check the routing table in the CLI. This method provides more complete information.

To check the routing table using the CLI

# get router info routing-table all

Codes: K – kernel, C – connected, S – static, R – RIP, B – BGP

O – OSPF, IA – OSPF inter area

N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2 E1 – OSPF external type 1, E2 – OSPF external type 2

i – IS-IS, L1 – IS-IS level-1, L2 – IS-IS level-2, ia – IS-IS inter area * – candidate default

S* 0.0.0.0/0 [10/0] via 192.168.183.254, port2

S 1.0.0.0/8 [10/0] via 192.168.183.254, port2

S 2.0.0.0/8 [10/0] via 192.168.183.254, port2

C 10.142.0.0/23 is directly connected, port3

B 10.160.0.0/23 [20/0] via 10.142.0.74, port3, 2d18h02m C 192.168.182.0/23 is directly connected, port2

Examining an entry from the routing table above:

B 10.160.0.0/23 [20/0] via 10.142.0.74, port3, 2d18h02m

B BGP. The routing protocol used.
10.160.0.0/23 The destination of this route including netmask.
[20/0] 20 indicates and administrative distance of 20 out of a range of 0 to 255.

0 is an additional metric associated with this route, such as in OSPF

10.142.0.74 The gateway, or next hop.
port3 The interface used by this route.
2d18h02m How old this route is, in this case almost three days old.

Perform a sniffer trace

When troubleshooting network traffic, it helps to look inside the headers of packets to determine if they are traveling along the route you expect. Packet sniffing can also be called a network tap, packet capture, or logic analyzing.

If your Carrier-enabled FortiGate unit has NP interfaces that are offloading traffic, this will change the sniffer trace. Before performing a trace on any NP interfaces, disable offloading on those interfaces.

What can sniffing packets tell you

If you are running a constant traffic application such as ping, packet sniffing can tell you if the traffic is reaching the destination, what the port of entry is on the Carrier-enabled FortiGate unit, if the ARP resolution is correct, and if the traffic is being sent back to the source as expected.

GTP packets are not moving along your network

Sniffing packets can also tell you if the Carrier-enabled FortiGate unit is silently dropping packets for reasons such as RPF (Reverse Path Forwarding), also called Anti Spoofing. This prevents an IP packet from being forwarded if its source IP address either does not belong to a locally attached subnet (local interface), or be a hop on the routing between the FortiOS Carrier and another source (static route, RIP, OSPF, BGP). Note that RPF can be disabled by turning on asymmetric routing in the CLI (config system setting, set asymmetric enable), however this will disable stateful inspection on the Carrier-enabled FortiGate unit and consequently cause many features to be turned off.

If you configure virtual IP addresses on your Carrier-enabled FortiGate unit, the unit will use those addresses in preference to the physical IP addresses. If not configured properly, secondary IP addresses can cause a broadcast storm. You will notice the secondary address being preferred when you are sniffing packets because all the traffic will be using the virtual IP addresses. This is due to the ARP update that is sent out when the VIP address is configured.

How to sniff packets

The general form of the internal FortiOS packet sniffer command is: diag sniffer packet <interface_name> <‘filter’> <verbose> <count>

To stop the sniffer, type CTRL+C.

<interface_name> The name of the interface to sniff, such as port1 or internal. This can also be any to sniff all interfaces.
<‘filter’> What to look for in the information the sniffer reads. none indicates no filtering, and all packets will be displayed as the other arguments indicate.

The filter must be inside single quotes (‘).

<verbose> The level of verbosity as one of:

print header of packets

print header and data from IP of packets

print header and data from Ethernet of packets

<count> The number of packets the sniffer reads before stopping. If you don’t put a number here, the sniffer will run forever unit you stop it with <CTRL C>.

For a simple sniffing example, enter the CLI command diag sniffer packet port1 none 1 3. This

will display the next 3 packets on the port1 interface using no filtering, and using verbose level 1. At this verbosity level you can see the source IP and port, the destination IP and port, action (such as ack), and sequence numbers.

In the output below, port 443 indicates these are HTTPS packets, and 172.20.120.17 is both sending and receiving traffic.

Head_Office_620b # diag sniffer packet port1 none 1 3 interfaces=[port1] filters=[none]

0.545306 172.20.120.17.52989 -> 172.20.120.141.443: psh 3177924955 ack 1854307757

0.545963 172.20.120.141.443 -> 172.20.120.17.52989: psh 1854307757 ack 3177925808

0.562409 172.20.120.17.52988 -> 172.20.120.141.443: psh 4225311614 ack 3314279933

Generate specific packets to test the network

If some packets are being delivered as expected while others are not, or after you believe you have fixed the problem, it is a good idea to generate specific traffic to test your network.

For example if you discover through log messages and packet sniffing that Create PDP Context Request messages are not being delivered between two SGSNs, you can generate those specific messages on your network to confirm they are the problem, and later that you have solved the problem and they are now being delivered as expected.

This step requires a third party traffic generation tool, either hardware or software. This is not be supported by Fortinet.

FortiCarrier SCTP Concepts

SCTP Concepts

As of FortiOS version 5.0, the FortiGate natively handles SCTP (Stream Control Transport Protocol) traffic, as an alternative to TCP and UDP for use in Carrier networks. The FortiGate handles SCTP as if it would any other traffic.

Overview

SCTP is a connection-oriented transport protocol that overcomes some of the limitations of both TCP and UDP that prevent reliable transfer of data over IP-based networks (such as those used by telephony systems and carrier networks). The ‘Stream’ in SCTP refers to the sequence of user messages or packets that are considered at the same time to be individual objects and also treated as a whole by networked systems. SCTP is less vulnerable to congestion and flooding due to more advanced error handling and flood protection built into the protocol.

SCTP features as compared to TCP and UDP

Feature SCTP TCP UDP
State required at each endpoint yes yes no
Reliable data transfer yes yes no
Congestion control and avoidance yes yes no
Message boundary conservation yes no yes
Path MTU discovery and message fragmentation yes yes no
Message bundling yes yes no
Multi-homed hosts support yes no no
Multi-stream support yes no no
Unordered data delivery yes no yes
Security cookie against SYN flood attack yes no no
Built-in heartbeat (reachability check) yes no N/A

All of these features are built into the design of the Protocol, and the structure of SCTP packets and networks. The FortiGate unit interprets the traffic and provides the necessary support for maintenance and verification features, but the features are not FortiGate specific. These features are documented in greater detail below.

SCTP Concepts

State required at each endpoint

Constant back and forth acknowledgement and content verification messages are sent between all SCTP peer endpoints, and all endpoints’ state machine actions must be synchronized for traffic to flow.

Reliable data transfer

SCTP places data and control information (eg. source, destination, verification) into separate messages, both sharing the same header in the same SCTP packet. This allows for constant verification of the contained data at both ends and along the path, preventing data loss or fragmentation. As well, data is not sent in an interruptible stream as in TCP.

Congestion control and avoidance

Built-in, constantly updating path detection and monitoring automatically redirect packets along alternate paths in case of traffic congestion or inaccessible destinations. For deliberate/malicious congestion control, see the below section on Security cookie against SYN flood attack.

Message boundary conservation

SCTP is designed in such a way that no matter how messages are divided, redirected, or fragmented, the message boundaries will be maintained within the packets, and all messages cannot be appended without tripping verification mechanisms.

Path MTU discovery and message fragmentation

SCTP is capable of Path Maximum Transmission Unit discovery, as outlined in RFC4821. Two specific alterations have been made to how SCTP handles MTU. First, that endpoints will have separate MTU estimates for each possible multi-homed endpoint. Second, that bundled message fragments (as explained below) will be directed based on MTU calculations, so that retransmissions (if necessary) will be sent without delay to alternate addresses.

Message bundling

SCTP is a message-oriented protocol, which means that despite being a streaming data protocol, it transports a sequence of specific messages, rather than transporting a stream of bytes (like TCP). Since some data transmissions are small enough to not require a complete message’s worth of content, so multiple pieces of content will be transmitted simultaneously within the messages.

Multi-homed hosts support

SCTP supports multi-homing, which is a network structure in which one or multiple sources/destinations has more than one IP address. SCTP can adapt to multi-homing scenarios and redirect traffic to alternate IP addresses in case of failure.

Multi-stream support

Due to the message bundling feature allowing for multiple pieces of content to be sent in messages at once, SCTP can ‘multi-stream’ content, by deliberately dividing it among messages at a fixed rate, so that multiple types of content (eg. both images and text) can be loaded at once, at the same pace.

GTP                                                                                                                                           SCTP Concepts

Unordered data delivery

With control messages in every packet to provide verification of any packet’s data and its place in the stream, the data being transmitted can actually arrive in any order, and verify that all has arrived or that some is missing.

Security cookie against SYN flood attack

Since every packet contains verification of its place in the stream, it makes it easy for the protocol to detect when redundant, corrupted or malicious packets flood the path, and they are automatically dropped when necessary.

Built-in heartbeat (reachability check)

Endpoints automatically send specific control chunks among the other SCTP packet information to peer endpoints, to determine the reachability of the destination. Hearthbeat acknowledgement packets are returned if the destination is available.

SCTP Firewall

FortiGate stateful firewalls will protect and inspect SCTP traffic, according to RFC4960. SCTP over IPsec VPN is also supported. The FortiGate device is inserted as a router between SCTP endpoints. It checks SCTP Syntax for the following information:

  • Source and destination port l Verification Tag l Chunk type, chunk flags, chunk length l Sequence of chunk types l Associations

The firewall also oversees and maintains several SCTP security mechanisms:

  • SCTP four-way handshake l SCTP heartbeat l NAT over SCTP

The firewall has IPS DoS protection against known threats to SCTP traffic, including INIT/ACK flood attacks, and SCTP fuzzing.

FortiCarrier GTP identity filtering

GTP identity filtering

FortiOS Carrier supports a number of filtering methods based on subscriber identity such as APN filtering, IMSI filtering, and advanced filtering.

This section includes:

IMSI on carrier networks

The International Mobile Subscriber Identity (IMSI) number is central to identifying users on a carrier network. It is a unique number that is assigned to a cell phone or mobile device to identify it on the GMS or UTMS network.

Typical the IMSI number is stored on the SIM card of the mobile device and is sent to the network as required.

An IMSI number is 15 digits long, and includes the Mobile Country Code (MCC), Mobile Network Code (MNC), and Mobile Station Identification Number (MSIN).

IMSI codes

The Home Network Identity (HNI) is made up of the MCC and MNC. The HNI is used to fully identify a user’s home network. This is important because some large countries have more than one country code for a single carrier. For example a customer with a mobile carrier on the East Coast of the United States would have a different MCC than a customer on the West Coast with the same carrier because even through the MNC would be the same the MCC would be different — the United States uses MCCs 310 to 316 due to its size.

If an IMSI number is not from the local carrier’s network, IMSI analysis is performed to resolve the number into a Global Title which is used to access the user’s information remotely on their home carrier’s network for things like billing and international roaming.

Other identity and location based information elements

IMSI focuses on the user, their location, and carrier network. There are other numbers used to identify different user related Information Elements (IE).

These identity and location based elements include:

  • Access Point Number (APN) l Mobile Subscriber Integrated Services Digital Network (MSISDN) l Radio Access Technology (RAT) type l User Location Information (ULI)
  • Routing Area Identifier (RAI)
  • International Mobile Equipment Identity (IMEI)

Access Point Number (APN)

The Access Point Number (APN) is used in GPRS networks to identify an IP packet data network that a user wants to communicate with. The Network Identifier describes the network and optionally the service on that network that the GGSN is connected to. The APN also includes the MCC and MCN, which together locate the network the GGSN belongs to. An example of an APN in the Barbados using Digicel as the carrier that is connecting to the Internet is internet.mcc342.mnc750.gprs.

When you are configuring your Carrier-enabled FortiGate unit’s GTP profiles, you must first configure the APN. It is critical to GTP communications and without it no traffic will flow.

The access point can then be used in a DNS query to a private DNS network. This process (called APN resolution) gives the IP address of the GGSN which serves the access point. At this point a PDP context can be activated.

Mobile Subscriber Integrated Services Digital Network (MSISDN)

This is a 15-digit number that, along with the IMSI, uniquely identifies a mobile user. Normally this number includes a 2-digit country code, a 3-digit national destination code, and a 10-digit subscriber number or the phone number of the mobile device, and because of that may change over time if the user changes their phone number. The MSISDN number follows the ITU-T E.164 numbering plan.

Radio Access Technology (RAT) type

The RAT type represents the radio technology used by the mobile device. This can be useful in determining what services or content can be sent to a specific mobile device. FortiOS Carrier supports:

  • UMTS Terrestrial Radio Access Network (UTRAN), commonly referred to as 3G, routes many types of traffic including IP traffic. This is one of the faster types.
  • GSM EDGE Radio Access Network (GERAN) is a key part of the GSM network which routes both phone calls and data.
  • Wireless LAN (WLAN) is used but not as widely as the other types. It is possible for the mobile device to move from one WLAN to another such as from an internal WLAN to a commercial hot spot.
  • Generic Access Network (GAN) can also be called unlicensed mobile access (UMA). It routes voice, data, and SIP over IP networks. GAN is commonly used for mobile devices that have a dual-mode and can hand-off between GSM and WLANs.
  • High Speed Packet Access (HSPA) includes two other protocols High Speed Downlink and Uplink Packet Access protocols (HSDPA and HSUPA respectively). It improves on the older WCDMA protocols by better using the radio bandwidth between the mobile device and the radio tower. This results in an increased data transfer rate for the user.

RAT type is part of advanced filtering configuration. See Configuring advanced filtering in FortiOS Carrier.

User Location Information (ULI)

Gives Cell Global Identity/Service Area Identity (CGI/SAI) of where the mobile station is currently located. The ULI and the RAI are commonly used together to identify the location of the mobile device.

ULI is part of advanced filtering configuration. See Configuring advanced filtering in FortiOS Carrier.

Routing Area Identifier (RAI)

Routing Areas (RAs) divide the carrier network and each has its own identifier (RAI). When a mobile device moves from one routing area to another, the connection is handled by a different part of the network. There are normally multiple cells in a routing area. There is only one SSGN per routing area. The RAI and ULI are commonly used to determine a user’s location.

RAI is part of advanced filtering configuration. See Configuring advanced filtering in FortiOS Carrier.

International Mobile Equipment Identity (IMEI)

IMEI is a unique 15-digit number used to identify mobile devices on mobile networks. It is very much like the MAC address of a TCP/IP network card for a computer. It can be used to prevent network access by a stolen phone — the carrier knows the mobile phone’s IMEI, and when it is reported stolen that IMEI is blocked from accessing the carrier network no matter if it has the same SIM card as before or not. It is important to note that the IMEI stays with the mobile phone or device where the other information is either location based or stored on the removable SIM card.

IMEI type is part of advanced filtering configuration. See Configuring advanced filtering in FortiOS Carrier.

When to use APN, IMSI, or advanced filtering

At first glance APN, IMSI, and advanced filtering have parts in common. For example two can filter on APN, and another two can filter on IMSI. The difficulty is knowing when to use which type of filtering.

Identity filtering comparison
Filtering type Filter on the following data: When to use this type of filtering
APN APN Filter based on GTP tunnel start or destination
IMSI IMSI, MCC-MNC Filter based on subscriber information
Advanced PDP context, APN, IMSI,

MSISDN, RAT type, ULI, RAI,

IMEI

When you want to filter based on:

•              user phone number (MSISDN)

•              what wireless technology the user employed •  to get on the network (RAT type)

•              user location (ULI and RAI)

•              handset ID, such as for stolen phones (IMEI)

APN filtering is very specific — the only identifying information that is used to filter is the APN itself. This will always be present in GTP tunnel traffic, so all GTP traffic can be filtered using this value.

IMSI filtering can use a combination of the APN and MCC-MNC numbers. The MCC and MNC are part of the APN, however filtering on MCC-MNC separately allows you to filter based on country and carrier instead of just the destination of the GTP Tunnel.

Advanced filtering can go into much deeper detail covering PDP contexts, MSISDN, IMEI, and more not to mention APN, and IMSI as well. If you can’t find the information in APN or IMSI that you need to filter on, then use Advanced filtering.

Configuring APN filtering in FortiOS Carrier

To configure APN filtering go to Security Profiles > GTP Profile. Select a profile or create a new one, and expand APN filtering.

When you are configuring your Carrier-enabled FortiGate unit’s GTP profiles, you must first configure the APN. It is critical to GTP communications and without it no traffic will flow.

Enable APN Filter Select to enable filtering based on APN value.
Default APN Action Select either Allow or Deny for all APNs that are not found in the list. The default is Allow.
Value Displays the APN value for this entry. Partial matches are allowed using wildcard. For example *.mcc333.mcn111.gprs would match all APNs from country 333 and carrier 111 on the gprs network.
Mode Select one or more of the methods used to obtain APN values.

Mobile Station provided – The APN comes from the mobile station where the mobile device connected. This is the point of entry into the carrier network for the user’s connection.

Network provided – The APN comes from the carrier network.

Subscription Verified – The user’s subscription has been verified for this APN. This is the most secure option.

Action One of allow or deny to allow or block traffic associated with this APN.
Delete icon Select to remove this APN entry from the list.
Edit icon Select to change the information for this APN entry.
Add APN Select to add an APN to the list. Not active while creating GTP profile, only when editing an existing GTP profile.

Save all changes before adding APNs. A warning to this effect will be displayed when you select the Add APN button.

The Add APN button is not activated until you save the new GTP profile. When you edit that GTP profile, you will be able to add new APNs.

Configuring IMSI filtering in FortiOS Carrier

In many ways the IMSI on a GPRS network is similar to an IP address on a TCP/IP network. Different parts of the number provide different pieces of information. This concept is used in IMSI filtering on FortiOS Carrier.

To configure IMSI filtering go to Security Profiles > GTP Profile and expand IMSI filtering.

While both the APN and MCC-MCN fields are optional, without using one of these fields the IMSI entry will not be useful as there is no information for the filter to match.

Enable IMSI Filter Select to turn on IMSI filtering.
Default IMSI Action Select Allow or Deny. This action will be applied to all IMSI numbers except as indicated in the IMSI list that is displayed.

The default value is Allow.

APN The Access Point Number (APN) to filter on.

This field is optional.

MCC-MNC The Mobile Country Code (MCC) and Mobile Network Code (MNC) to filter on. Together these numbers uniquely identify the carrier and network of the GGSN being used.

This field is optional.

Mode Select the source of the IMSI information as one or more of the following:

Mobile Station provided – the IMSI number comes from the mobile station the mobile device is connecting to.

Network provided – the IMSI number comes from the GPRS network which could be a number of sources such as the SGSN, or HLR.

Subscription Verified – the IMSI number comes from the user’s home network which has verified the information.

While Subscription Verified is the most secure option, it may not always be available. Selecting all three options will ensure the most complete coverage.

Action Select the action to take when this IMSI information is encountered. Select one of Allow or Deny.
Delete Icon Select the delete icon to remove this IMSI entry.
Edit Icon Select the edit icon to change information for this IMSI entry.
Add IMSI Select to add an IMSI to the list. Not active while creating GTP profile, only when editing an existing GTP profile.

Save all changes before adding IMSIs. A warning to this effect will be displayed when you select the Add IMSI button.

Configuring advanced filtering in FortiOS Carrier

Compared to ADN or IMSI filtering, advanced filtering is well named. Advanced filtering can be viewed as a catchall filtering option — if ADN or IMSI filtering doesn’t do what you want, then advanced filtering will. The advanced filtering can use more information elements to provide considerably more granularity for your filtering.

Enable Select to turn on advanced filtering.
Default Action Select Allow or Deny as the default action to take when traffic does not match an entry in the advanced filter list .
Messages Optionally select one or more types of messages this filter applies to:

Create PDP Context Request, Create PDP Context Response, Update PDP Context Request, or Update PDP Context Response.

Selecting Create PDP Context Response or Update PDP Context Response limits RAT type to only GAN and HSPA, and disables the APN, APN Mode, IMSI, MSISDN, ULI, RAI, and IMEI fields.

To select Update PDP Context Request, APN Restriction must be set to all. Selecting Update PDP Context Request disables the APN, MSISDN, and IMEI fields.

if all message types are selected, only the RAT Types of GAN and HSPA are available to select.

APN Restriction APN Restriction either allows all APNs or restricts the APNs to one of four categories — Public-1, Public-2, Private-1, or Private-2. This can also be combined with a specific APN or partial APN as well as specifying the APN mode.
RAT Type Select one or more of the Radio Access Technology Types listed. These fields control how a user accesses the carrier’s network. You can select one or more of UTRAN, GERAN, WLAN, GAN, HSPA, or any.
ULI The user location identifier. Often the ULI is used with the RAI to locate a user geographically on the carrier’s network.

The ULI is disabled when Create PDP Context Response or Update PDP Context Response messages are selected.

 

RAI The router area identifier. There is only one SGSN per routing area on a carrier network. This is often used with ULI to locate a user geographically on a carrier network.

The RAI is disabled when Create PDP Context Response or Update PDP Context Response messages are selected.

IMEI The International Mobile Equipment Identity. The IMEI uniquely identifies mobile hardware, and can be used to block stolen equipment.

The IMEI is only available when Create PDP Context Request or no messages are selected.

Action Select Allow or Deny as the action when this filter matches traffic.

The default is Allow.

Delete Icon Select to delete this entry from the list.
Edit Icon Select to edit this entry.
Add Select to add an advanced filter to the list. Not active while creating GTP profile, only when editing an existing GTP profile.

Save all changes before adding advanced filters. A warning to this effect will be displayed when you select the Add button.

 

SCTP Concepts

FortiCarrier GTP message type filtering

GTP message type filtering

FortiOS Carrier supports message filtering in GTP by the type of message.

This section includes:

Common message types on carrier networks

Carrier networks include many types of messages — some concern the network itself, others are content moving across the network, and still others deal with handshaking, billing, or other administration based issues.

GTP contains two major parts GTP for the control plane (GTP-C) and GTP for user data tunnelling (GTP-U). Outside of those areas there are only unknown message types.

GTP-C messages

GTP-C contains the networking layer messages. These address routing, versioning, and other similar low level issues.

When a subscriber requests a Packet Data Protocol (PDP) context, the SGSN will send a create PDP context request GTP-C message to the GGSN giving details of the subscriber’s request. The GGSN will then respond with a create PDP context response GTP-C message which will either give details of the PDP context actually activated or will indicate a failure and give a reason for that failure. This is a UDP message on port 212.

GTP-C message types include Path Management Messages, Location Management Messages, and Mobility Management Messages.

Path Management Messages

Path management is used by one GSN to detect if another GSN is alive, or if it has restarted after a failure.

The path management procedure checks if a given GSN is alive or has been restarted after a failure. In case of SGSN restart, all MM and PDP contexts are deleted in the SGSN, since the associated data is stored in a volatile memory. In the case of GGSN restart, all PDP contexts are deleted in the GGSN.

Tunnel Management Messages

The tunnel management procedures are used to create, update, and delete GTP tunnels in order to route IP PDUs between an MS and an external PDN via the GSNs.

The PDP context contains the subscriber’s session information when the subscriber has an active session. When a mobile wants to use GPRS, it must first attach and then activate a PDP context. This allocates a PDP context data structure in the SGSN that the subscriber is currently visiting and the GGSN serving the subscriber’s access point.

Tunnel management procedures are defined to create, update, and delete tunnels within the GPRS backbone network. A GTP tunnel is used to deliver packets between an SGSN and a GGSN. A GTP tunnel is identified in each GSN node by a TEID, an IP address, and a UDP port number.

Location Management Messages

The location-management procedure is performed during the network-requested PDP context activation procedure if the GGSN does not have an SS7 MAP interface (i.e., Gc interface). It is used to transfer location messages between the GGSN and a GTP-MAP protocol-converting GSN in the GPRS backbone network.

Location management subprocedures are used between a GGSN that does not support an SS7 MAP interface (i.e., Gc interface) and a GTP-MAP protocol-conversing GSN. This GSN supports both Gn and Gc interfaces and is able to perform a protocol conversing between GTP and MAP.

Mobility Management Messages

The MM procedures are used by a new SGSN in order to retrieve the IMSI and the authentication information or MM and PDP context information in an old SGSN. They are performed during the GPRS attach and the interSGSN routing update procedures.

The MM procedures are used between SGSNs at the GPRS-attach and inter-SGSN routing update procedures. An identity procedure has been defined to retrieve the IMSI and the authentication information in an old SGSN. This procedure may be performed at the GPRS attach. A recovery procedure enables information related to MM and PDP contexts in an old SGSN to be retrieved. This procedure is started by a new SGSN during an inter-SGSN RA update procedure.

GTP-U messages

GTP-U is focused on user related issues including tunneling, and billing. GTP-U message types include MBMS messages, and GTP-U and Charging Management Messages

MBMS messages

Multimedia Broadcast and Multicast Services (MBMS) have recently begun to be offered over GSM and UMTS networks on UTRAN and GERAN radio access technologies. MBMS is mainly used for mobile TV, using up to four GSM timeslots for one MBMS connection. One MBMS packet flow is replicated by GGSN, SGSN and RNCs.

MBMS is split into the MBMS Bearer Service and the MBMS User Service. The MBMS User Service is basically the MBMS Service Layer and offers a Streaming- and a Download Delivery Method. The Streaming Delivery method can be used for continuous transmissions like Mobile TV services. The Download Method is intended for “Download and Play” services.

GTP-U and Charging Management Messages

SGSNs and GGSNs listen for GTP-U messages on UDP port 2152.

GTP‘ (GTP prime) is used for billing messages. It uses the common GTP messages (GTP Version Not Supported, Echo Request and Echo Response) and adds additional messages related to billing procedures.

Unknown Action messages

If the system doesn’t know what type of message it is, it falls into this category. This is an important category of message because malformed messages may appear and need to be handled with security in mind.

Configuring message type filtering in FortiOS Carrier

GPRS Tunnelling Protocol (GTP) is a group of IP-based communications protocols used to carry General Packet

Radio Service (GPRS) traffic within Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) networks. It allows carriers to transport actual cellular packets over their network via tunneling.

In the CLI, there is a keyword for each type of GTP message for both message filtering, and for message rate limiting.

To configure GTP message type filtering – web-based manager

  1. Go to Security Profiles > GTP Profile.
  2. Select Create New.
  3. Enter a name for this profile such as msg_type_filtering.
  4. Select Message Type Filtering to expand it.
  5. For each type of message in the list, select Allow or Deny. All messages are set to Allow by default.
  6. Optionally select and configure any other GTP features for this profile, such as logging.
  7. Select OK to save the profile.
  8. Apply the msg_type_filtering profile a security policy configured for GTP tunnel traffic.

To configure GTP message filtering and block Unknown Message Action messages- CLI

config firewall gtp edit msg_type_filtering config message-filter set unknown-message-action deny

next

end

end

Message Type Fields

Each of the following message types can be allowed or denied by your Carrier-enabled FortiGate unit depending on your carrier network and GTP traffic.

Unknown Message Action

Set this message type to deny.

Many attempts to hack into a carrier network will result in this unknown message type and therefore it is denied for security reasons.

Path Management Messages

Message Type Used by Description
Echo Request/Response GTP-C,

GTP-U,

GTP’

Echo Request is sent on a path to another GSN to determine if the other node is alive. Echo Response is the reply.
Version not Supported GTP-C,

GTP-U,

GTP’

There are multiple versions of GTP. Both devices communicating must use the same version of GTP, or this message will be the response.
Support Extension Headers

Notification

Extensions are optional parts that a device can choose to support or not. If a device includes these extensions, it must include headers for the extensions to sure ensure proper formatting.

Tunnel Management Messages

Message Type Used by Description
Create PDP Context Request/ Response GTP-C Sent from an SGSN to a GGSN node as part of a GPRS PDP

Context Activation procedure or the Network-Requested PDP Context Activation procedure. A valid request initiates the creation of a tunnel.

Update PDP Context Request/ Response GTP-C Used when PDP Context information changes, such as when a mobile device changes location.
Delete PDP Context Request/ Response GTP-C Used to terminate a PDP Context, and confirm the context has been deleted.
Create AA PDP Context Request/ Response GTP-C Sent as part of the GPRS Anonymous Access PDP Context Activation. It is used to create a tunnel between a context in the SGSN and a context in the GGSN.
Delete AA PDP Context Request/ Response GTP-C Sent as part of the GPRS PDP Anonymous Access Context

Deactivation procedure to deactivate an activated PDP Context.

It contains Cause and Private Extension Information Elements

Message Type Used by Description
Error Indication GTP-U Sent to the GGSN when a tunnel PDU is received for the following conditions:

— No PDP context exists

— PDP context is inactive

— No MM context exists

— GGSN deletes its PDP context when the message is received.

PDU Notification Request/

Response/ Reject Request/

Reject Response

GTP-C When receiving a Tunneled PDU (T-PDU), the GGSN checks if a PDP context is established for the given PDP address. If no PDP context has been established, the GGSN may initiate the Network-requested PDP Context Activation procedure by sending a PDU Notification Request to the SGSN.

Reject Request – Sent when the PDP context requested by the GGSN cannot be established.

Location Management Messages

Message Type Used By Description
Send Routing Information for GPRS Request/ Response GTP-C Sent by the GGSN to obtain location information for the MS.

This message type contains the IMSI of the MS and Private Extension.

Failure Report Request/ Response GTP-C Sent by the GGSN to the HLR when a PDU reject message is received.

The GGSN requests the HLR to set the flag and add the GGSN to the list of nodes to report to when activity from the subscriber that owns the PDP address is detected.

The message contains the subscriber IMSI and Private Extension

Note MS GPRS Present Request/ Response GTP-C When the HLR receives a message from a mobile with MDFG

set, it clears the MDFG and sends the Note MS Present message to all GGSN’s in the subscriber’s list.

This message type contains subscriber IMSI, GSN Address and Private Extension

Mobility Management Messages

Message Type Used By Description
Identification

Request/Response

GTP-C Sent by the new SGSN to the old SGSN to request the IMSI for a MS when a GPRS Attach is done with a P-TMSI and the MS has changed SGSNs since the GPRS Detach was done.
SGSN context Request/ Response/ Acknowledge GTP-C Sent by the new SGSN to the old SGSN to request the MM and PDP Contexts for the MS.
Forward Relocation Request/

Response/ Complete/

Complete Acknowledge

GTP-C Indicates mobile activation/deactivation within a Routing Area. This prevents paging of a mobile that is not active (visited VLR rejects calls from the HLR or applies Call Forwarding). Note that the mobile station does not maintain an attach/detach state.

SRNS contexts contain for each concerned RAB the sequence numbers of the GTP-PDUs next to be transmitted in uplink and downlink directions.

Relocation Cancel Request/ Response GTP-C Send to cancel the relocation of a connection.
Forward SRNS Context/ Context Acknowledge GTP-C This procedure may be used to trigger the transfer of SRNS contexts from RNC to CN (PS domain) in case of inter system forward handover.
RAN Information Relay GTP-C Forward the Routing Area Network (RAN) information.

A Routing Area (RA) is a subset of a GSM Location Area (LA). A RA is served by only one SGSN. Ensures that regular radio contact is maintained by the mobile

MBMS messages

Message Type Used By Description
MBMS Notification Request/

Response/ Reject Request/

Reject Response

GTP-C Notification of the radio access devices.
Create MBMS Context Request/ Response GTP-C Request to create an active MBMS context. The context will be pending until the response is received.

Once active, the MBMS context allows the MS to receive data from a specific MBMS source

Message Type Used By Description
Update MBMS Context Request/ Response GTP-C
Delete MBMS Context Request/ Response GTP-C Request to deactivate the MBMS context. When the response is received, the MBMS context will be inactive.

GTP-U and Charging Management Messages

Message Type Used By Description
G-PDU GTP-C, GTP-U GPRS Packet data unit delivery message.
Node Alive Request/Response GTP-C, GTP-U Used to inform rest of network when a node starts service.
Redirection

Request/Response

GTP-C, GTP-U Used to divert the flow of CDRs from the CDFs to another CGF when the sender is being removed, or they are used when the CGF has lost its connection to a downstream system.
Data Record Transfer Request/Response GTP-C, GTP-U Used to reliably transport CDRs from the point of generation (SGSN/GGSN) to non-volatile storage in the CGF