Category Archives: FortiWLC

WIFI Reference

Reference

FortiAP web-based manager

You can access the FortiAP unit’s built-in web-based manager. This is useful to adjust settings that are not available through the FortiGate unit’s WiFi Controller. Logging into the FortiAP web-based manager is similar to logging into the FortiGate web-based manager.

System information

Status

The Status section provides information about the FortiAP unit.

You can:

  • Select Change to change the Host Name. l Select Update in Firmware Version to upload a new FortiAP firmware file from your computer.
  • Select Change Password to change the administrator password. l Select Backup to save the current FortiAP configuration as a file on your computer. l Select Restore to load a configuration into your FortiAP unit from a file on your computer.

Network configuration

Select DHCP or select Static and specify the IP address, netmask, and gateway IP address. Administrative Access settings affect access after the FortiAP has been authorized. By default, HTTP access needed to access the FortiAP web-based manager is enabled, but Telnet access is not enabled.

Connectivity

These settings determine how the FortiAP unit connects to the FortiGate WiFi controller.

 

Uplink Ethernet – wired connection to the FortiGate unit (default)

Mesh – WiFi mesh connection

Ethernet with mesh backup support

Mesh AP SSID Enter the SSID of the mesh root. Default: fortinet.mesh.root
Mesh AP Password Enter password for the mesh SSID.
Ethernet Bridge Bridge the mesh SSID to the FortiAP Ethernet port.

This is available only whe Uplink is Mesh.

WTP configuration

AC Discovery Type settings affect how the FortiAP unit discovers a FortiGate WiFi controller. By default, this is set to Auto which causes the FortiAP unit to cycle through all of the discovery methods until successful. For more information see Controller discovery methods.

AC Discovery Type Static, DHCP, DNS, Broadcast, Multicast, Auto
AC Control Port Default port is 5246.
AC IP Address 1

AC IP Address 2

AC IP Address 3

You enter up to three WiFi controller IP addresses for static discovery. Routing must be properly configured in both directions.
AC Host Name 1

AC Host Name 2

AC Host Name 3

As an alternetive to AC IP addresses, you can enter their fully qualified domain names (FQDNs).
AC Discovery

Multicast

Address

224.0.1.140
AC Discovery

DHCP Option

Code

When using DHCP discovery, you can configure the DHCP server to provide the controller address. By default the FortiAP unit expects this in option 138.

AC Data Channel Security by default accepts either DTLS-encrypted or clear text data communication with the WiFi controller. You can change this setting to require encryption or to use clear text only.

Wireless information

The Wireless Information page provides current information about the operation of the radios and the type Uplink in use.

Wireless radio channels

IEEE 802.11a/n channels

The following table lists the channels supported on FortiWiFi products that support the IEEE 802.11a and 802.11n wireless standards. 802.11a is available on FortiWiFi models 60B and higher. 802.11n is available on FortiWiFi models 80CM and higher.

All channels are restricted to indoor usage except in the Americas, where both indoor and outdoor use is permitted on channels 52 through 64 in the United States.

IEEE 802.11a/n (5-GHz Band) channel numbers

Channel number Frequency (MHz) Regulatory Areas

Americas Europe

Taiwan Singapore Japan
34 5170    
36 5180          •               •  
38 5190      
40 5200          •               •             •                •
42 5210      
44 5220          •               •             •                •
46 5230      
48 5240          •               •             •                •
149 5745
153 5765
157 5785
161 5805
165 5825  

IEEE 802.11b/g/n channel numbers

The following table lists IEEE 802.11b/g/n channels. All FortiWiFi units support 802.11b and 802.11g. Newer models also support 802.11n.

Wireless radio channels

Mexico is included in the Americas regulatory domain. Channels 1 through 8 are for indoor use only. Channels 9 through 11 can be used indoors and outdoors. You must make sure that the channel number complies with the regulatory standards of Mexico.

IEEE 802.11b/g/n (2.4-GHz Band) channel numbers

Channel number Frequency (MHz) Regulatory Areas

Americas EMEA

Israel Japan
1 2412          •                   • indoor
2 2417          •                   • indoor
3 2422          •                   • indoor
4 2427          •                   • indoor
5 2432          •                   •
6 2437          •                   •
7 2442          •                   •
8 2447          •                   •
9 2452          •                   •
10 2457          •                   •
11 2462          •                   •
12 2467
13 2472
14 2484     b only

View all country and regcodes/regulatory domains

The following CLI command can be entered to view a list of the country and regcodes/regulatory Domains supported by Fortinet:

cw_diag -c all-countries

Below is a table showing a sample of the list displayed by entering this command:

Country-code Region-code Domain ISO-name Name
0                      A                    FCC3 & FCCA                      NA             NO_COUNTRY_SET

WiFi event types

Country-code Region-code Domain ISO-name Name
8                        W                   NULL1 & WORLD AL              ALBANIA
12                      W                   NULL1 & WORLD DZ              ALGERIA
16                      A                    FCC3 & FCCA AS              AMERICAN SAMOA
              …                    …                               …         …                             …

WiFi event types

Event type Description
rogue-ap-detected A rogue AP has been detected (generic).
rogue-ap-off-air A rogue AP is no longer detected on the RF side.
rogue-ap-on-wire A rogue AP has been detected on wire side (connected to AP or controller L2 network).
rogue-ap-off-wire A rogue AP is no longer detected on wire.
rogue-ap-on-air A rogue AP has been detected on the RF side.
fake-ap-detected A rogue AP broadcasting on the same SSIDs that you have in your managed APs has been detected.
fake-ap-on-air The above fake AP was detected on the RF side.

FortiAP CLI

The FortiAP CLI controls radio and network operation through the use of variables manipulated with the cfg command. There are also diagnostic commands.

The cfg command include the following

cfg -s   List variables.
cfg -a var=value   Add or change a variable value.
cfg -c   Commit the change to flash.
cfg -x   Reset settings to factory defaults.

 

cfg -r var Remove variable.
cfg -e Export variables.
cfg -h Display help for all commands.

The configuration variables are:

Var Description and Values
AC_CTL_PORT WiFi Controller control (CAPWAP) port. Default 5246.
AC_DATA_CHAN_SEC Data channel security.

0 – Clear text

1 – DTLS (encrypted)

2 – Accept either DTLS or clear text (default)

AC_DISCOVERY_TYPE 1 – Static. Specify WiFi Controllers

2 – DHCP

3 – DNS

5 – Broadcast

6 – Multicast

0 – Cycle through all of the discovery types until successful.

AP_IPADDR

AP_NETMASK

IPGW

These variables set the FortiAP unit IP address, netmask and default gateway when ADDR_MODE is STATIC.

Default 192.168.1.2 255.255.255.0, gateway 192.168.1.1.

AC_HOSTNAME_1

AC_HOSTNAME_2

AC_HOSTNAME_3

WiFi Controller host names for static discovery.
AC_IPADDR_1

AC_IPADDR_2

AC_IPADDR_3

WiFi Controller IP addresses for static discovery.
AC_DISCOVERY_DHCP_OPTION_CODE Option code for DHCP server. Default 138.
AC_DISCOVERY_MC_ADDR Multicast address for controller discovery. Default 224.0.1.140.

 

Var Description and Values
ADDR_MODE How the FortiAP unit obtains its IP address and netmask.

DHCP – FortiGate interface assigns address.

STATIC – Specify in AP_IPADDR and AP_NETMASK.

Default is DHCP.

ADMIN_TIMEOUT Administrative timeout in minutes. Applies to Telnet and web-based manager sessions. Default is 5 minutes.
AP_MGMT_VLAN_ID Non-zero value applies VLAN ID for unit management.

Default: 0.

AP_MODE FortiAP operating mode.

0 – Thin AP (default)

2 – Unmanaged Site Survey mode. See SURVEY variables.

BAUD_RATE Console data rate: 9600, 19200, 38400, 57600, or 115200 baud.
DNS_SERVER DNS Server for clients. If ADDR_MODE is DHCP the DNS server is automatically assigned.
FIRMWARE_UPGRADE Default is 0.
HTTP_ALLOW Access to FortiAP web-based manager 1 – Yes (default), 0 – No.
LED_STATE Enable/disable status LEDs.

0 – LEDs enabled, 1 – LEDs disabled, 2 – follow AC setting.

LOGIN_PASSWD Administrator login password. By default this is empty.
STP_MODE Spanning Tree Protocol. 0 is off. 1 is on.
TELNET_ALLOW By default (value 0), Telnet access is closed when the FortiAP unit is authorized. Set value to 1 to keep Telnet always available.
WTP_LOCATION Optional string describing AP location.
Mesh variables  

 

Var Description and Values
MESH_AP_BGSCAN Enable or disable background mesh root AP scan.

0 – Disabled

1 – Enabled

MESH_AP_BGSCAN_RSSI If the root AP’s signal is weak, and lower than the received signal strength indicator (RSSI) threshold, the WiFi driver will immediately start a new round scan and ignore the configured MESH_AP_BGSCAN_PERIOD delays. Set the value between 0-127.

After the new round scan is finished, a scan done event is passed to wtp daemon to trigger roaming.

MESH_AP_BGSCAN_PERIOD Time in seconds that a delay period occurs between scans. Set the value between 1-3600.
MESH_AP_BGSCAN_IDLE Time in milliseconds. Set the value between 0-1000.
MESH_AP_BGSCAN_INTV Time in milliseconds between channel scans. Set the value between 200-16000.
MESH_AP_BGSCAN_DUR Time in milliseconds that the radio will continue scanning the channel. Set the value between 10-200.
MESH_AP_SCANCHANLIST Specify those channels to be scanned.
MESH_AP_TYPE Type of communication for backhaul to controller:

0 – Ethernet (default)

1 – WiFi mesh

2 – Ethernet with mesh backup support

MESH_AP_SSID SSID for mesh backhaul. Default: fortinet.mesh.root
MESH_AP_BSSID WiFi MAC address
MESH_AP_PASSWD Pre-shared key for mesh backhaul.
MESH_ETH_BRIDGE 1 – Bridge mesh WiFi SSID to FortiAP Ethernet port. This can be used for point-to-point bridge configuration. This is available only when MESH_AP_TYPE =1.

0 – No WiFi-Ethernet bridge (default).

Var                                                                 Description and Values
MESH_MAX_HOPS                      Maximum number of times packets can be passed from node to node on the mesh. Default is 4.
The following factors are summed and the FortiAP associates with the lowest scoring mesh AP.
MESH_SCORE_HOP_WEIGHT                Multiplier for number of mesh hops from root. Default 50.
MESH_SCORE_CHAN_WEIGHT              AP total RSSI multiplier. Default 1.
MESH_SCORE_RATE_WEIGHT              Beacon data rate multiplier. Default 1.
 Band weight (0 for 2.4GHz, 1 for 5GHz) multiplier. Default

MESH_SCORE_BAND_WEIGHT

100.

MESH_SCORE_RSSI_WEIGHT              AP channel RSSI multiplier. Default 100.
Survey variables
SURVEY_SSID                        SSID to broadcast in site survey mode (AP_MODE=2).
SURVEY_TX_POWER                     Transmitter power in site survey mode (AP_MODE=2).
SURVEY_CH_24                        Site survey transmit channel for the 2.4Ghz band (default

6).

Site survey transmit channel for the 5Ghz band (default

SURVEY_CH_50

36).

SURVEY_BEACON_INTV                  Site survey beacon interval. Default 100msec.
cw_diag help   Display help for all diagnose commands.
cw_diag uptime   Show daemon uptime.
cw_diag –tlog <on|off> Turn on/off telnet log message.
cw_diag –clog <on|off> Turn on/off console log message.
cw_diag 38400 | baudrate [9600 | 19200 | 57600 | 115200] Set the console baud rate.

Previously, FortiAP accepted Telnet and HTTP connection to any virtual interfaces that have an IP address. For security reasons, Telnet and HTTP access are now limited to br0 or br.vlan for AP_MGMT_VLAN_ID.

Diagnose commands include:

 

cw_diag plain-ctl [0|1] Show or change current plain control setting.
cw_diag sniff-cfg ip port Set sniff server ip and port.
cw_diag sniff [0|1|2] Enable/disable sniff packet.
cw_diag stats wl_intf Show wl_intf status.
cw_diag admin-timeout [30] Set shell idle timeout in minutes.
cw_diag -c wtp-cfg Show current wtp config parameters in control plane.
cw_diag -c radio-cfg Show current radio config parameters in control plane.
cw_diag -c vap-cfg Show current vaps in control plane.
cw_diag -c ap-rogue Show rogue APs pushed by AC for on-wire scan.
cw_diag -c sta-rogue Show rogue STAs pushed by AC for on-wire scan.
cw_diag -c arp-req Show scanned arp requests.
cw_diag -c ap-scan Show scanned APs.
cw_diag -c sta-scan Show scanned STAs.
cw_diag -c sta-cap Show scanned STA capabilities.
cw_diag -c wids Show scanned WIDS detections.
cw_diag -c darrp Show darrp radio channel.
cw_diag -c mesh Show mesh status.
cw_diag -c mesh-veth-acinfo Show mesh veth ac info, and mesh ether type.
cw_diag -c mesh-veth-vap Show mesh veth vap.
cw_diag -c mesh-veth-host Show mesh veth host.
cw_diag -c mesh-ap Show mesh ap candidates.
cw_diag -c scan-clr-all Flush all scanned AP/STA/ARPs.
cw_diag -c ap-suppress Show suppressed APs.
cw_diag -c sta-deauth De-authenticate an STA.

Link aggregation can also be set in the CLI. Link aggregation is used to combine multiple network connections in parallel in order to increase throughput beyond what a single connection could sustain.

  • FortiAP 320B and 320C models are supported. l FortiAP 112B and 112D models cannot support link aggregation.
  • NPI FAP-S3xxCR and “wave2” FAP/FAP-S models will have link aggregation feature via synchronization with regular FortiAP trunk build.

WIFI Troubleshooting

Troubleshooting

In the following section, you will learn basic troubleshooting techniques for a secure Fortinet wireless LAN including:

l strategies for troubleshooting Fortinet wireless devices l how to avoid common misconfigurations l solutions to connectivity issues l capturing and analyzing wireless traffic l wireless debug commands

The goal of this document is to provide you with practical knowledge that you can use to troubleshoot the FortiOS wireless controller and FortiAP devices. This includes how to use tools and apply CLI commands for maintenance and troubleshooting of your wireless network infrastructure, analyze problems per OSI layer, explore diagnostics for commissioning issues regarding at-client and access point connectivity problems, and understand the packet sniffer technique as a strong troubleshooting tool.

The content is divided as follows:

FortiAP shell command through CAPWAP control tunnel

Signal strength issues

Throughput issues

Connection issues

General problems

Packet sniffer

Useful debugging commands

FortiAP shell command through CAPWAP control tunnel

Very often, the FortiAP in the field is behind a NAT device, and access to the FortiAP through Telnet or SSH is not available. As a troubleshooting enhancement, this feature allows an AP shell command up to 127-bytes sent to

the FAP, and FAP will run this command, and return the results to the controller using the CAPWAP tunnel.

The maximum output from a command is limited to 4M, and the default output size is set to 32K.

The FortiAP will only report running results to the controller after the command is finished. If a new command is sent to the AP before the previous command is finished, the previous command will be canceled.

Enter the following:

diag w-c wlac wtpcmd wtp_ip wtp_port cmd [cmd-to-ap] cmd: run,show,showhex,clr,r&h,r&sh

  • cmd-to-ap: any shell commands, but AP will not report results until the command is finished on the AP l run: controller sends the ap-cmd to the FAP to run l show: show current results reported by the AP in text l showhex: show current results reported by the AP in hex l clr: clear reported results

Signal strength

  • r&s: run/show l r&sh: run/showhex

Signal strength issues

Poor signal strength is possibly the most common customer complaint. Below you will learn where to begin identifying and troubleshooting poor signal strength, and learn what information you can obtain from the customer to help resolve signal strength issues.

Asymmetric power issue

Asymmetric power issues are a typical problem. Wireless is two-way communication; high power access points (APs) can usually transmit a long distance, however, the client’s ability to transmit is usually not equal to that of the AP and, as such, cannot return transmission if the distance is too far.

Measuring signal strength in both directions

To solve an asymmetric power issue, measure the signal strength in both directions. APs usually have enough power to transmit long distances, but sometimes battery-powered clients have a reply signal that has less power, and therefore the AP cannot detect their signal.

It is recommended that you match the transmission power of the AP to the least powerful wireless client—around 10 decibels per milliwatt (dBm) for iPhones and 14dBm for most laptops.

Even if the signal is strong enough, other devices may be emitting radiation as well, causing interference. To identify the difference, read the client Rx strength from the FortiGate GUI (under Monitor > WiFi Client Monitor) or CLI.

The Signal Strength/Noise value provides the received signal strength indicator (RSSI) of the wireless client.

For example, A value of -85dBm to -95dBm is equal to about 10dB levels; this is not a desirable signal strength.

In the following screenshot, one of the clients is at 18dB, which is getting close to the perimeter of its range.

Signal strength issues

You can also confirm the transmission (Tx) power of the controller on the AP profile (wtp-profile) and the FortiAP (iwconfig), and check the power management (auto-Tx) options.

Controller configured transmitting power – CLI:

config wireless-controller wtp-profile config <radio> show

(the following output is limited to power levels) auto-power-level : enable auto-power-high : 17 auto-power-low : 10

Actual FortiAP transmitting power – CLI:

iwconfig wlan00

Result:

wlan00 IEEE 802.11ng ESSID:”signal-check”

Mode:Master Frequency:2.412 GHz Access Point:<MAC add>

Bit Rate:130 Mb/s Tx-Power=28 dBm

Using FortiPlanner PRO with a site survey

The most thorough method to solve signal strength issues is to perform a site survey. To this end, Fortinet offers the FortiPlanner, downloadable at http://www.fortinet.com/resource_center/product_downloads.html.

Sample depiction of a site survey using FortiPlanner

The site survey provides you with optimal placement for your APs based on the variables in your environment. You must provide the site survey detailed information including a floor plan (to scale), structural materials, and more. It will allow you to place the APs on the map and adjust the radio bands and power levels while providing you with visual wireless coverage.

Below is a list of mechanisms for gathering further information on the client for Rx strength. The goal is to see how well the client is receiving the signal from the AP. You can also verify FortiAP signal strength on the client using WiFi client utilities, or third party utilities such as InSSIDer or MetaGeek Chanalyzer. You can get similar tools from the app stores on Android and iOS devices.

  • Professional Site Survey software (Ekahau, Airmagnet survey Pro, FortiPlanner) l InSSIDer l On Windows: “netsh wlan show networks mode=bssid” (look for the BSSID, it’s in % not in dBm!) l On MacOS: Use the “airport” command:

“/System/Library/PrivateFrameworks/Apple80211.framework/Versions/A/Resources/airport” airport –s | grep <the_bssid> (live scan each time)

  • On Droid: WiFiFoFum

Frequency interference

If the wireless signal seems to be strong but then periodically drops, this may be a symptom of frequency interference. Frequency interference is when another device also emits radio frequency using the same channel,

co-channel, or adjacent channel, thereby overpowering or corrputing your signal. This is a common problem on a 2.4GHz network.

There are two types of interference: coherent and non-coherent.

  • Coherent interference: a result of another device using the same channel as your AP, or poor planning of a wireless infrastructure (perhaps the other nearby APs are using the same channel or the signal strength is too high).
  • Non-coherent interference: a result of other radio signals such as bluetooth, microwave, cordless phone, or (as in medical environments) x-ray machines.

Most common and simple solution for frequency interference is to change your operation channel. Typically, the channel can be set from 1 to 11 for the broadcast frequency, although you should always use channels 1, 6, and 11 on the 2.4GHz band.

Another solution, if it’s appropriate for your location, is to use the 5GHz band instead.

MetaGeek Chanalyzer

You can perform a site survey using spectrum analysis at various points in your environment looking for signal versus interference/noise. MetaGeek Chanalyzer is an example of a third party utility which shows a noise threshold.

Note that a signal of -95dBm or less will be ignored by Fortinet wireless adapters.

Throughput issues

Sometimes communication issues can be caused by low performance.

Testing the link

You can identify delays or lost packets by sending ping packets from your wireless client. If there is more than 10ms of delay, there may be a problem with your wireless deployment, such as:

  • a weak transmit signal from the client (the host does not reach the AP) l the AP utilization is too high (your AP could be saturated with connected clients) l interference (third party signal could degrade your AP or client’s ability to detect signals between them) Throughput
  • weak transmit power from the AP (the AP does not reach the host) — not common in a properly deployed network, unless the client is too far away

Keep in mind that water will also cause a reduction in radio signal strength for those making use out of outdoor APs or wireless on a boat.

Performance testing

If the FortiAP gives bad throughput to the client, the link may drop. The throughput or performance can be measured on your smartphone with third party applications tool such as iPerf and jPerf.

Measuring file transfer speed

Another way to get a sense of your throughput issues is to measure the speed of a file transfer on your network. Create a test file at a specific size and measure the speed at which Windows measures the transfer. The command below will create a 50MB file.

l fsutil file createnew test.txt 52428800

The following image shows a network transfer speed of just over 24Mbps. The theoretical speed of 802.11g is 54Mbps, which is what this client is using. A wireless client is never likely to see the theoretical speed.

TKIP limitation

If you find that throughput is a problem, avoid WPA security encrypted with Temporal Key Integrity Protocol (TKIP) as it supports communications only at 54Mbps. Use WPA-2 AES instead.

Speeds are very much based on what the client computer can handle as well. The maximum client connection rate of 130Mbps is for 2.4GHz on a 2×2, or 300Mbps for 5Ghz on a 2×2 (using shortguard and channel bonding enabled).

If you want to get more than 54Mbps with 802.11n, do not use legacy TKIP, use CCMP instead. This is standard for legacy compatibility.

Preventing IP fragmentation in CAPWAP

TKIP is not the only possible source of decreased throughput. When a wireless client sends jumbo frames using a CAPWAP tunnel, it can result in data loss, jitter, and decreased throughput.

Using the following commands you can customize the uplink rates and downlink rates in the CAPWAP tunnel to prevent fragmentation and avoid data loss.

config wireless-controller wtp edit new-wtp set ip-fragment-preventing [tcp-mss-adjust | icmp-unreachable]

set tun-mtu-uplink [0 | 576 | 1500] set tun-mtu-downlink [0 | 576 | 1500]

end

end

The default value is 0, however the recommended value will depend on the type of traffic. For example, IPsec in tunnel mode has 52 bytes of overhead, so you might use 1400 or less for uplink and downlink.

Slowness in the DTLS response

It’s important to know all the elements involved in the CAPWAP association:

l Request l Response l DTLS l Join l Configuration

All of these are bidirectional. So if the DTLS response is slow, this might be the result of a configuration error. This issue can also be caused by a certificate during discovery response. You can read more about this in RFC 5416.

Connection issues

If the client has a connectivity issue that is not due to signal strength, the solution varies by the symptom.

Client connection issues

  1. If client is unable to connect to FortiAP:
    • Make sure the client’s security and authentication settings match with FortiAP and check the certificates as well. l Try upgrading the Wi-Fi adapter driver and FortiGate/FortiAP firmware. l If other clients can connect, it could be interoperability; run debug commands and sniffer packets.
    • Look for rogue suppression by sniffing the wireless traffic and looking for the disconnect in the output (using the AP or wireless packet sniffer). l Try changing the IEEE protocol from 802.11n to 802.11bg or 802.11a only.
  2. If the client drops and reconnects:

Connection

  • The client might be de-authenticating periodically. Check the sleep mode on the client. l The issue could be related to power-saver settings. The client may need to udpate drivers.
  • The issue could also be caused by flapping between APs. Check the roaming sensitivity settings on the client or the preferred wireless network settings on the client—if another WiFi network is available, the client may connect to it if it is a preferred network. Also, check the DHCP configuration as it may be an IP conflict.
  1. If the client drops and never connects:
    • It could have roamed to another SSID, so check the standby and sleep modes. l You may need to bring the interface up and down.
  2. If the client connects, but no IP address is acquired by the client:
    • Check the DHCP configuration and the network. l It could be a broadcast issue, so check the WEP encryption key and set a static IP address and VLANs.

Debug

You should also enable client debug on the controller for problematic clients to see the stage at which the client fails to connect. Try to connect from the problematic client and run the following debug command, which allows you to see the four-way handshake of the client association: diagnose wireless-controller wlac sta_filter <client MAC address> 2

Example of a successful client connection:

The following is a sample debug output for the above command, with successful association/DHCP phases and PSK key exchange (identified in color):

FG600B3909600253 #

91155.197 <ih> IEEE 802.11 mgmt::assoc_req <== 30:46:9a:f9:fa:34 vap signal-check rId 0 wId 0 00:09:0f:f3:20:45 91155.197 <ih> IEEE 802.11 mgmt::assoc_resp ==> 30:46:9a:f9:fa:34 vap signal-check rId 0 wId 0 00:09:0f:f3:20:45 resp 0

91155.197 <cc> STA_CFG_REQ(15) sta 30:46:9a:f9:fa:34 add ==> ws (0-192.168.35.1:5246) rId 0 wId 0

91155.197 <dc> STA add 30:46:9a:f9:fa:34 vap signal-check ws (0-192.168.35.1:5246) rId 0 wId 0 bssid 00:09:0f:f3:20:45 NON-AUTH

91155.197 <cc> STA add 30:46:9a:f9:fa:34 vap signal-check ws (0-192.168.35.1:5246) rId 0 wId 0 00:09:0f:f3:20:45 sec WPA2 AUTO auth 0

91155.199 <cc> STA_CFG_RESP(15) 30:46:9a:f9:fa:34 <== ws (0-192.168.35.1:5246) rc 0 (Success)

91155.199 <eh> send 1/4 msg of 4-Way Handshake

91155.199 <eh> send IEEE 802.1X ver=1 type=3 (EAPOL_KEY) data len=95 replay cnt 1

91155.199 <eh> IEEE 802.1X (EAPOL 99B) ==> 30:46:9a:f9:fa:34 ws (0-192.168.35.1:5246) rId 0 wId 0 00:09:0f:f3:20:45

91155.217 <eh> IEEE 802.1X (EAPOL 121B) <== 30:46:9a:f9:fa:34 ws (0-192.168.35.1:5246) rId 0 wId 0 00:09:0f:f3:20:45

91155.217 <eh> recv IEEE 802.1X ver=1 type=3 (EAPOL_KEY) data len=117

91155.217 <eh> recv EAPOL-Key 2/4 Pairwise replay cnt 1

91155.218 <eh> send 3/4 msg of 4-Way Handshake

91155.218 <eh> send IEEE 802.1X ver=1 type=3 (EAPOL_KEY) data len=175 replay cnt 2

91155.218 <eh> IEEE 802.1X (EAPOL 179B) ==> 30:46:9a:f9:fa:34 ws (0-192.168.35.1:5246) rId 0 wId 0 00:09:0f:f3:20:45

91155.223 <eh> IEEE 802.1X (EAPOL 99B) <== 30:46:9a:f9:fa:34 ws (0-192.168.35.1:5246) rId 0 wId 0 00:09:0f:f3:20:45

91155.223 <eh> recv IEEE 802.1X ver=1 type=3 (EAPOL_KEY) data len=95

91155.223 <eh> recv EAPOL-Key 4/4 Pairwise replay cnt 2

91155.223 <dc> STA chg 30:46:9a:f9:fa:34 vap signal-check ws (0-192.168.35.1:5246) rId 0 wId 0 bssid 00:09:0f:f3:20:45 AUTH

91155.224 <cc> STA chg 30:46:9a:f9:fa:34 vap signal-check ws (0-192.168.35.1:5246) rId 0 wId 0 00:09:0f:f3:20:45 sec WPA2 AUTO auth 1

91155.224 <cc> STA_CFG_REQ(16) sta 30:46:9a:f9:fa:34 add key (len=16) ==> ws (0192.168.35.1:5246) rId 0 wId 0

91155.226 <cc> STA_CFG_RESP(16) 30:46:9a:f9:fa:34 <== ws (0-192.168.35.1:5246) rc 0 (Success)

91155.226 <eh> ***pairwise key handshake completed*** (RSN)

91155.257 <dc> DHCP Request server 0.0.0.0 <== host ADMINFO-FD4I2HK mac 30:46:9a:f9:fa:34 ip 172.16.1.16

91155.258 <dc> DHCP Ack server 172.16.1.1 ==> host mac 30:46:9a:f9:fa:34 ip 172.16.1.16 mask 255.255.255.0 gw 172.16.1.1

where:

l orange represents the association phase, l blue represents the PSK exchange, l and green represents the DHCP phase.

It is important to note the messages for a correct association phase, four-way handshake, and DHCP phase.

Checking WiFi password

Admins can view plain text passwords (captive-portal-radius-secret and passphrase) under config wireless-controller vap.

Note that security must be set as a WPA-personal setting.

FortiAP connection issues

Clients are not the only device that can fail to connect, of course. A communication problem could arise from the FortiAP.

Some examples include:

  • The FortiAP is not connecting to the wireless controller. l One FortiAP intermittently disconnects and re-connects. l All FortiAPs intermittently disconnect and re-connect. l Unable to Telnet to FortiAP from controller/administrator workstation.

In the above cases:

  • Check networking on the distribution system for all related FortiAPs. l Check the authorization status of managed APs from the wireless controller. l Restart the cw_acd process (Note: All APs will drop if you do this, and you may be troubleshooting just one AP).
  • Check the controller crash log for any wireless controller daemon crash using the following command:

diagnose debug crashlog read

Debug

For a quick assessment of the association communication between the controller and the FortiAP, run the following sniffer command to see if you can verify that the AP is communicating to the controller by identifying the CAPWAP communication:

diagnose sniff packet <interface_name> “port 5246” 4

Connection

If you do not see this communication, then you can investigate the network or the settings on the AP to see why it is not reaching the controller.

The following command allows you to collect verbose output from the sniff that can be converted to a PCAP and viewed in Wireshark.

diagnose sniff packet <interface_name> “port 5246” 6 o l

The image below shows the beginning of the AP’s association to the controller. You can see the discovery Request and Response at the top.

Throughout debugging it is recommended to:

  • Enable Telnet login to the FortiAP device so that you can log in and issue local debugging commands:

config wireless-controller wtp edit “<FortiAP_serial_number>” set override-allowaccess {disable|enable}

set allowaccess {telnet | http | https | ssh}

end l Try to connect to the wireless controller from the problematic FortiAP to verify routes exist.

  • Enable wtp (FortiAP) debugging on the wireless controller for problematic FortiAPs to determine the point at which the FortiAP fails to connect:

diag wireless-controller wlac wtp_filter FP112B3X13000193 0-192.168.6.8:5246 2

(replace the serial number and IP address of the FortiAP) di de console timestamp en di de application cw_acd 0x7ff di de en

Example of a successful AP and controller association:

The previous debug command provides similar output to the sample debug message below for a successful association between the FortiAP and the wireless controller. This includes the elements of the CAPWAP protocol; the Request, Response, DTLS, Join, and Configuration (identified in color). All of these are bi-directional, so if the DTLS response is slow, it may be an example of a configuration error.

56704.575 <msg> DISCOVERY_REQ (12) <== ws (0-192.168.35.1:5246) 56704.575 <msg> DISCOVERY_RESP (12) ==> ws (0-192.168.35.1:5246) 56707.575 <msg> DISCOVERY_REQ (13) <== ws (0-192.168.35.1:5246) 56707.575 <msg> DISCOVERY_RESP (13) ==> ws (0-192.168.35.1:5246) 56709.577 <aev> – CWAE_INIT_COMPLETE ws (0-192.168.35.1:5246)

56709.577 <aev> – CWAE_LISTENER_THREAD_READY ws (0-192.168.35.1:5246)

56709.577 <fsm> old CWAS_START(0) ev CWAE_INIT_COMPLETE(0) new CWAS_IDLE(1)

56709.577 <fsm> old CWAS_IDLE(1) ev CWAE_LISTENER_THREAD_READY(1) new CWAS_DTLS_SETUP(4)

56709.623 <aev> – CWAE_DTLS_PEER_ID_RECV ws (0-192.168.35.1:5246)

56709.623 <aev> – CWAE_DTLS_AUTH_PASS ws (0-192.168.35.1:5246)

56709.623 <aev> – CWAE_DTLS_ESTABLISHED ws (0-192.168.35.1:5246)

56709.623 <fsm> old CWAS_DTLS_SETUP(4) ev CWAE_DTLS_PEER_ID_RECV(7) new CWAS_DTLS_ AUTHORIZE(2)

56709.623 <fsm> old CWAS_DTLS_AUTHORIZE(2) ev CWAE_DTLS_AUTH_PASS(3) new CWAS_DTLS_CONN(5)

56709.623 <fsm> old CWAS_DTLS_CONN(5) ev CWAE_DTLS_ESTABLISHED(8) new CWAS_JOIN(7)

56709.625 <msg> JOIN_REQ (14) <== ws (0-192.168.35.1:5246)

56709.625 <aev> – CWAE_JOIN_REQ_RECV ws (0-192.168.35.1:5246)

56709.626 <fsm> old CWAS_JOIN(7) ev CWAE_JOIN_REQ_RECV(12) new CWAS_JOIN(7)

56709.629 <msg> CFG_STATUS (15) <== ws (0-192.168.35.1:5246)

56709.629 <aev> – CWAE_CFG_STATUS_REQ ws (0-192.168.35.1:5246)

56709.629 <fsm> old CWAS_JOIN(7) ev CWAE_CFG_STATUS_REQ(13) new CWAS_CONFIG(8)

56710.178 <msg> CHG_STATE_EVENT_REQ (16) <== ws (0-192.168.35.1:5246)

56710.178 <aev> – CWAE_CHG_STATE_EVENT_REQ_RECV ws (0-192.168.35.1:5246)

56710.178 <fsm> old CWAS_CONFIG(8) ev CWAE_CHG_STATE_EVENT_REQ_RECV(23) new CWAS_DATA_ CHAN_SETUP(10)

56710.220 <aev> – CWAE_DATA_CHAN_CONNECTED ws (0-192.168.35.1:5246)

56710.220 <msg> DATA_CHAN_KEEP_ALIVE <== ws (0-192.168.35.1:5246)

56710.220 <aev> – CWAE_DATA_CHAN_KEEP_ALIVE_RECV ws (0-192.168.35.1:5246)

56710.220 <msg> DATA_CHAN_KEEP_ALIVE ==> ws (0-192.168.35.1:5246)

56710.220 <fsm> old CWAS_DATA_CHAN_SETUP(10) ev CWAE_DATA_CHAN_CONNECTED(32) new CWAS_ DATA_CHECK(11)

56710.220 <aev> – CWAE_DATA_CHAN_VERIFIED ws (0-192.168.35.1:5246)

56710.220 <fsm> old CWAS_DATA_CHECK(11) ev CWAE_DATA_CHAN_KEEP_ALIVE_RECV(35) new CWAS_ DATA_CHECK(11)

56710.220 <fsm> old CWAS_DATA_CHECK(11) ev CWAE_DATA_CHAN_VERIFIED(36) new CWAS_RUN(12)

56710.228 <msg> WTP_EVENT_REQ (17) <== ws (0-192.168.35.1:5246)

56710.228 <aev> – CWAE_WTP_EVENT_REQ_RECV ws (0-192.168.35.1:5246)

56710.228 <fsm> old CWAS_RUN(12) ev CWAE_WTP_EVENT_REQ_RECV(42) new CWAS_RUN(12)

56710.230 <msg> CFG_UPDATE_RESP (1) <== ws (0-192.168.35.1:5246) rc 0 (Success)

56710.230 <aev> – CWAE_CFG_UPDATE_RESP_RECV ws (0-192.168.35.1:5246)

56710.230 <msg> WTP_EVENT_REQ (18) <== ws (0-192.168.35.1:5246)

56710.230 <aev> – CWAE_WTP_EVENT_REQ_RECV ws (0-192.168.35.1:5246)

56710.230 <fsm> old CWAS_RUN(12) ev CWAE_CFG_UPDATE_RESP_RECV(37) new CWAS_RUN(12)

56710.230 <fsm> old CWAS_RUN(12) ev CWAE_WTP_EVENT_REQ_RECV(42) new CWAS_RUN(12)

56710.231 <msg> WTP_EVENT_REQ (19) <== ws (0-192.168.35.1:5246)

56710.231 <aev> – CWAE_WTP_EVENT_REQ_RECV ws (0-192.168.35.1:5246)

56710.231 <fsm> old CWAS_RUN(12) ev CWAE_WTP_EVENT_REQ_RECV(42) new CWAS_RUN(12)

56710.232 <msg> CFG_UPDATE_RESP (2) <== ws (0-192.168.35.1:5246) rc 0 (Success)

56710.232 <aev> – CWAE_CFG_UPDATE_RESP_RECV ws (0-192.168.35.1:5246)

 

General problems

56710.232 <fsm> old CWAS_RUN(12) ev CWAE_CFG_UPDATE_RESP_RECV(37) new CWAS_RUN(12)

56710.233 <msg> WTP_EVENT_REQ (20) <== ws (0-192.168.35.1:5246)

56710.233 <aev> – CWAE_WTP_EVENT_REQ_RECV ws (0-192.168.35.1:5246)

56710.233 <fsm> old CWAS_RUN(12) ev CWAE_WTP_EVENT_REQ_RECV(42) new CWAS_RUN(12)

56712.253 < . > AC (2) -> WTP (0-192.168.35.1:5246) State: CWAS_RUN (12) accept 3 live 3 dbg 00000000 pkts 12493 0 56715.253 < . > AC (2) -> WTP (0-192.168.35.1:5246) State: CWAS_RUN (12) accept 3 live 6 dbg 00000000 pkts 12493 0 56718.253 < . > AC (2) -> WTP (0-192.168.35.1:5246) State: CWAS_RUN (12) accept 3 live 9 dbg 00000000 pkts 12493 0

56719.253 <aev> – CWAE_AC_ECHO_INTV_TMR_EXPIRE ws (0-192.168.35.1:5246)

56719.253 <fsm> old CWAS_RUN(12) ev CWAE_AC_ECHO_INTV_TMR_EXPIRE(39) new CWAS_RUN(12)

56719.576 <msg> ECHO_REQ (21) <== ws (0-192.168.35.1:5246)

56719.576 <aev> – CWAE_ECHO_REQ_RECV ws (0-192.168.35.1:5246)

56719.577 <fsm> old CWAS_RUN(12) ev CWAE_ECHO_REQ_RECV(27) new CWAS_RUN(12)

where:

l orange represents the Discovery phase, l blue indicates that the control channels have been established using DTLS, l green represents the access point Discovery and Join phase, l purple represents the Clear Text channel, l and pink indicates that the FortiAP successfully connected to the wireless controller.

General problems

Not all WiFi problems are related to signal strength, interference, or misconfiguration. The following OSI model identifies some of the more common issues per layer.

Best practices for troubleshooting vary depending on the affected layer (see below).

Common sources of wireless issues

General problems

Best practices for Layer 1

Common physical layer issues include:

  • Weak received signal, l WiFi capability: 802.11b, 1×1, 2×2, l Co-channel WiFi interference, l Side band WiFi interference, l Non 802.11 noise (microwave ovens…).

To avoid physical layer issues:

  • Determine RST (Receiver Sensitivity Threshold) for your device, or use -70dBm as a rule of thumb.
  • Match AP TX output power to the client TX output power.
  • Note: iPhone TX power is only 10dBm.
  • Use DFS (Dynamic Frequency Selection) for high performance data 20/40 MHz. l Use 5GHz UNII-1 & 3 (Non-DFS) bands with static channel assignment for latency-sensitive applications. l Do not use 40MHz channels in 2.4 GHz band (channel bonding is not allowed in FortiOS).

Best practices for Layer 2

Common data link (MAC) layer issues include:

  • Too many clients on a single channel (CSMA/CA) backoff, l Too many high-priority traffic clients (WMM), l Incorrect password or encryption settings, l Too many beacons (in dense installs).

To avoid data link layer issues:

  • Only use CCMP/AES (WPA2) encryption (not TKIP).
  • In high density deployments, turn off SSID broadcast or turn down SSID rates. Review and possibly reduce the beacon interval. l Determine the best cell size for applications:
  • For few users and low bandwidth latency sensitive applications, use high transmit power to create larger cells.
  • For high performance/high capacity installations, use lower transmit power to create smaller cells (set FortiPlanner at 10dBm TX power), but bear in mind that this will require more roaming.

Cells and co-channel interference

In high density deployments, multiple APs are used, and each one services an area called a cell. However, these cells can cause interference with each other. This is a common problem. The radio signal from one AP interferes with, or cancels out, the radio signal from another AP.

In the following diagram, note the interference zone created by one radio, causing interference on its neighbouring APs.

The interference zone can be twice the radius of the signal, and the signal at its edge can be -67dBm.

General problems

Reducing co-channel interference

For best results, use a ‘honeycomb’ pattern as a deployment strategy. The idea is to stagger repeated channels furthest from each other to avoid interference.

Best practices for Layer 3 and above

For TCP/IP layers and above, a common source of latency, or slowness in the wireless traffic, is too many broadcasts or multicasts. These types of issues can result from non-business and/or unwanted traffic.

To resolve issues at the TCP/IP layer and above:

Packet sniffer

  • Identify business-critical applications.
  • Use Application Control, Web Filtering, Traffic Shaping, and QoS to prioritize applications.
  • Identify unwanted traffic, high-bandwidth web-related traffic, and use Security Profiles. l Use the traffic shaper on a policy to rate-limit this traffic.

These configurations are performed directly on the FortiGate.

Packet sniffer

Capturing the traffic between the controller and the FortiAP can help you identify most FortiAP and client connection issues.

This section describes the following recommended packet sniffing techniques:

l CAPWAP packet sniffer l Wireless traffic packet sniffer

CAPWAP packet sniffer

The first recommended technique consists of sniffing the CAPWAP traffic.

  • Enable plain control on the controller and on the FortiAP to capture clear control traffic on UDP port 5246.
  • On the controller: diagnose wireless-controller wlac plain-ctl <FortiAP_serial_number> 1

Result:

WTP 0-FortiAP2223X11000107 Plain Control: enabled l On the FortiAP: cw_diag plain-ctl 1

Result:

Current Plain Control: enabled

Note that some issues are related to the keep-alive for control and data channel.

  • Data traffic on UDP port 5247 is not encrypted. The data itself is encrypted by the wireless security mechanism.

Data traffic is helpful to troubleshoot most of the issues related to station association, EAP authentication, WPA key exchange, roaming, and FortiAP configuration.

You can also set up a host or server to which you can forward the CAPWAP traffic:

  1. Configure the host/server to which CAPWAP traffic is forwarded: diagnose wireless-controller wlac sniff-cfg <Host_IP_address> 88888

Result:

Current Sniff Server: 192.168.25.41, 23352

  1. Choose which traffic to capture, the interface to which the FortiAP is connected, and the FortiAP’s serial number: diagnose wireless-controller wlac sniff <interface_name> <FortiAP_serial_number> 2

Result:

Packet sniffer

WTP 0-FortiAP2223X11000107 Sniff: intf port2 enabled (control and data message)

In the above syntax, the ‘2’ captures the control and data message—’1′ would capture only the control message, and ‘0’ would disable it.

  1. Run Wireshark on the host/server to capture CAPWAP traffic from the controller. l Decode the traffic as IP to check inner CAPWAP traffic.

Example CAPWAP packet capture

The following image shows an example of a CAPWAP packet capture, where you can see: the Layer 2 header; the sniffed traffic encapsulated into Internet Protocol for transport; CAPWAP encapsulated into UDP for sniffer purpose and encapsulated into IP; CAPWAP control traffic on UDP port 5246; and CAPWAP payload.

Wireless traffic packet sniffer

The second recommended technique consists of sniffing the wireless traffic directly ‘on the air’ using your FortiAP.

Wireless traffic packet capture

Packet captures are useful for troubleshooting all wireless client related issues because you can verify data rate and 802.11 parameters, such as radio capabilities, and determine issues with wireless signal strength, interference, or congestion on the network.

A radio can only capture one frequency at a time; one of the radios is set to sniffer mode depending on the traffic or channel required. You must use two FortiAPs to capture both frequencies at the same time. l Set a radio on the FortiAP to monitor mode.

Packet sniffer

iwconfig wlan10

Result:

wlan10 IEEE 802.11na    ESSID:””

Mode:Monitor Frequency:5.18 GHz Access Point: Not-Associated l The capture file is stored under the temp directory as wl_sniff.pcap

/tmp/wl_sniff.cap

  • Remember that the capture file is only stored temporarily. If you want to save it, upload it to a TFTP server before rebooting or changing the radio settings. l The command cp wl_sniff.cap newname.pcap allows you to rename the file.
  • Rather than TFTP the file, you can also log in to the AP and retrive the file via the web interface. Move the file

using the command: mv name /usr/www

You can verify the file was moved using the command cd/usr/www and then browsing to: <fortiAP_ IP>/filename

Syntax

The following syntax demonstrates how to set the radio to sniffer mode (configurable from the CLI only). Sniffer mode provides options to filter for specific traffic to capture. Notice that you can determine the buffer size, which channel to sniff, the AP’s MAC address, and select if you want to sniff the beacons, probes, controls, and data channels.

configure wireless-controller wtp-profile edit <profile_name> configure <radio> set mode sniffer set ap-sniffer-bufsize 32 set ap-sniffer-chan 1 set ap-sniffer-addr 00:00:00:00:00:00 set ap-sniffer-mgmt-beacon enable set ap-sniffer-mgmt-probe enable set ap-sniffer-mgmt-other enable set ap-sniffer-ctl enable set ap-sniffer-data enable

end

end

Once you’ve performed the previous CLI configuration, you’ll be able to see the packet sniffer mode selected in the GUI dashboard under WiFi & Switch Controller > FortiAP Profiles and WiFi & Switch Controller > Managed FortiAPs. Bear in mind that if you change the mode from the GUI, you’ll have to return to the CLI to re-enable the Sniffer mode.

To disable the sniffer profile in the CLI, use the following commands:

config wireless-controller wtp-profile edit <profile_name> config <radio> set ap-sniffer-mgmt-beacon disable set ap-sniffer-mgmt-probe disable set ap-sniffer-mgmt-other disable set ap-sniffer-ctl disable set ap-sniffer-data disable end

Useful debugging commands

end

Example AP packet capture

The following image shows an example of the AP packet capture. Note the capture header showing channel 36; the beacon frame; the source, destination, and BSSID of the beacon frame; and the SSID of the beacon frame.

Useful debugging commands

For a comprehensive list of useful debug options you can use the following help commands on the controller:

diagnose wireless-controller wlac help

(this command lists the options available that pertain to the wireless controller)

diagnose wireless-controller wlwtp help

(this command lists the options available that pertain to the AP)

Useful debugging commands

Sample outputs

Syntax

diagnose wireless-controller wlac -c vap

(this command lists the information about the virtual access point, including its MAC address, the BSSID, its

SSID, the interface name, and the IP address of the APs that are broadcasting it)

Result:

bssid              ssid intf     vfid:ip-port rId wId

00:09:0f:d6:cb:12 Office Office ws (0-192.168.3.33:5246) 0 0

00:09:0f:e6:6b:12 Office Office ws (0-192.168.1.61:5246) 0 0

06:0e:8e:27:dc:48 Office Office  ws (0-192.168.3.36:5246) 0 0

0a:09:0f:d6:cb:12 public publicAP ws (0-192.168.3.33:5246) 0 1

Syntax

diagnose wireless-controller wlac -c darrp

(this command lists the information pertaining to the radio resource provisioning statistics, including the AP serial number, the number of channels set to choose from, and the operation channel. Note that the 5GHz band is not available on these APs listed)

Result:

wtp_id           rId base_mac          index nr_chan vfid 5G oper_chan age
FAP22A3U10600400 0 00:09:0f:d6:cb:12 0    3       0    No 1         87588
FW80CM3910601176 0 06:0e:8e:27:dc:48 1     3      0    No 6         822

Support for extension information for wtp, vap, and station

You can enable or disable extension information at wtp-profile, and use the diagnose option below to print out the detail of extension information.

Syntax

config wireless-controller wtp-profile edit test set lldp [enable | disable] set ext-info [enable | disable] –> Enable/disable station/VAP/radio extension information. end

end diagnose wireless-controller wlac -d [wtp | vap | sta]

where:

l wlac -d wtp [SN|name] [reset] –> list or reset wtp info(data) l wlac -d vap [bssid] [reset] –> list or reset vap info(data) l wlac -d sta [mac] [reset] –> list or reset sta info(data)

Managing a FortiAP with FortiCloud

Managing a FortiAP with FortiCloud

This chapter provides a few FortiCloud-managed FortiAP configuration examples.

FortiCloud-managed FortiAP WiFi

FortiCloud-managed FortiAP WiFi without a key

You can register for a free FortiCloud account at www.forticloud.com.

For a video tutorial of how to configure and manage a FortiAP-S device from FortiCloud, follow the link below:

l How to configure and Manage FortiAP-S from FortiCloud

FortiCloud-managed FortiAP WiFi

In this example, you use FortiCloud to configure a single FortiAP-221C, creating a working WiFi network without a FortiGate.

FortiCloud remote management is supported on FortiAP models 221C and 320C.

For this configuration, the FortiAP-221C unit is running version 5.2 firmware. You will create a simple network that uses WPA-Personal authentication.

You can register for a free FortiCloud account at www.forticloud.com.

To create the WiFi network without a FortiGate unit, you must:

l Add your FortiAP to FortiCloud l Configure the SSID l Configure the AP platform profile l Deploy the AP with the profile

Adding your FortiAP to FortiCloud

You need to add the FortiAP unit to your FortiCloud account. This is done through a unique key that can be found under the FortiAP unit.

To add a FortiAP to FortiCloud

  1. Connect the FortiAP Ethernet interface to a network that provides access to the Internet.
  2. Open a web browser and navigate to the FortiCloud main page and select + AP Network.
  3. Enter an AP Network Name and AP Password. This password is used to locally log in to the AP as the administrator. It will be set to all APs in this AP network.
  4. Set the correct Time Zone and select Submit.

Configuring the SSID

You must establish the SSID (network interface) for the WiFi network.

153 FortiOS™ Handbook – FortiWiFi and FortiAP Configuration Guide Fortinet Technologies Inc.

Managing a FortiAP with FortiCloud                                                    FortiCloud-managed FortiAP WiFi without a key

To configure the SSID

  1. Select the FortiAP you just created from the home page. You will then be prompted to add an SSID for the AP Network.

In the interface, this is under Configure > SSIDs.

  1. In Access Control, enter the name of your SSID, set Authentication to WPA2-Personal, enter the Preshared Key, and select Next.
  2. In Security, enable security features as required (select from AntiVirus, Intrusion Prevention, Block Botnet, Web Access, and Application Control) and select Next.
  3. In Availability, make sure to leave 5 GHz enabled, configure a schedule as required, and select Next.
  4. Review your SSID in Preview, then select Apply.

Configuring the AP platform profile

The radio portion of the FortiAP configuration is contained in the FortiAP platform profile. By default, there is a profile for each platform (FortiAP model). The SSID needs to be specified in the profile.

To configure the AP profile

  1. Go to Configure > AP Profile and edit the AP Profile for your FortiAP model (mouse-over the AP Profile to reveal the Edit button).
  2. Enable the SSID configured earlier for both Radio 1 and Radio 2, for 5GHz coverage.

Deploying the AP with the platform profile

With the SSID and platform profile configured, you must deploy the AP by entering the FortiCloud key for the FortiAP.

To deploy the AP

  1. Go to Configure > Deploy APs. Here you will be prompted to enter the FortiCloud key, which can be found on the same label as the FortiAP unit’s serial number, and select Submit.

If you have a FortiAP model that does not include a FortiCloud key, you can still add the device to the network. To learn how, see the FortiCloud-managed FortiAP WiFi without a key configuration.

  1. In Set Platform Profiles, select the platform profile you created earlier and select Next.
  2. Follow the rest of the deployment wizard. Select Submit when completed.

You will now be able to connect to the wireless network and browse the Internet. On the FortiCloud website, go to Monitor > Report where you can view monitoring information such as Traffic by Period, Client Count by Period, and more.

FortiCloud-managed FortiAP WiFi without a key

You can manage your FortiAP-based wireless network with FortiCloud even if your FortiAP has no FortiCloud key.

FortiOS™ Handbook – FortiWiFi and FortiAP Configuration Guide                                                                         154

Fortinet Technologies Inc.

FortiCloud-managed FortiAP WiFi without a key                                                    Managing a FortiAP with FortiCloud

For this example, you will need to have already pre-configured your FortiAP unit with your FortiCloud account credentials. For more information on how to do this, or if your FortiAP has a FortiCloud key (on the serial number label), see the FortiCloud-managed FortiAP WiFi configuration.

You can register for a free FortiCloud account at www.forticloud.com.

To create the WiFi network without a FortiCloud key, you must:

l Configure the FortiAP unit l Add the FortiAP unit to your FortiCloud account l Configure the FortiAP

Configuring the FortiAP unit

You need to connect and configure the FortiAP unit through the web-based manager of the FortiGate.

To configure the FortiAP unit – web-based manager

  1. Connect your computer to the FortiAP Ethernet port. The FortiAP’s default IP address is 192.168.1.2. The computer should have an address on the same subnet, 192.168.1.3 for example.
  2. Using a browser, log in to the FortiAP as admin. Leave the password field empty.
  3. In WTP-Configuration, select FortiCloud and enter your FortiCloud credentials. Select Apply.

The FortiAP is now ready to connect to FortiCloud via the Internet.

Adding the FortiAP unit to your FortiCloud account

The FortiAP must be added to the FortiCloud account that has a WiFi network already configured for it.

For an example of creating a WiFi network on FortiCloud, see FortiCloud-managed FortiAP WiFi on page 153.

To add the FortiAP to FortiCloud

  1. Connect the FortiAP Ethernet cable to a network that connects to the Internet.

Restore your computer to its normal network configuration and log on to FortiCloud.

  1. From the Home screen, go to Inventory > AP Inventory. Your FortiAP should be listed.
  2. Then go back to the Home screen, select your AP network, and go to Deploy APs.
  3. Select your listed FortiAP and select Next.
  4. Make sure your platform profile is selected from the dropdown menu, and select Next.
  5. In Preview, select Deploy.

The device will now appear listed under Access Points.

You will now be able to connect to the wireless network and browse the Internet. On the FortiCloud website, go to Monitor > Report where you can view monitoring information such as Traffic by Period, Client Count by Period, and more.

155 FortiOS™ Handbook – FortiWiFi and FortiAP Configuration Guide Fortinet Technologies Inc.

 

Wireless network examples

Wireless network examples

This chapter provides an example wireless network configuration.

Basic wireless network A more complex example

Basic wireless network

This example uses automatic configuration to set up a basic wireless network.

To configure this wireless network, you must:

l Configure authentication for wireless users l Configure the SSID (WiFi network interface) l Add the SSID to the FortiAP Profile l Configure the firewall policy l Configure and connect FortiAP units

Configuring authentication for wireless users

You need to configure user accounts and add the users to a user group. This example shows only one account, but multiple accounts can be added as user group members.

To configure a WiFi user – web-based manager

  1. Go to User & Device > User Definition and select Create New.
  2. Select Local User and then click Next.
  3. Enter a User Name and Password and then click Next.
  4. Click
  5. Make sure that Enable is selected and then click Create.

To configure the WiFi user group – web-based manager

  1. Go to User & Device > User Groups and select Create New.
  2. Enter the following information and then select OK:
Name wlan_users
Type Firewall
Members Add users.

To configure a WiFi user and the WiFi user group – CLI

config user user edit “user01”

Basic wireless network

set type password set passwd “asdf12ghjk”

end

config user group edit “wlan_users” set member “user01”

end

Configuring the SSID

First, establish the SSID (network interface) for the network. This is independent of the number of physical access points that will be deployed. The network assigns IP addresses using DHCP.

To configure the SSID – web-based manager

  1. Go to WiFi & Switch Controller > SSID and select Create New > SSID.
  2. Enter the following information and select OK:
Interface Name                                  example_wifi_if
Traffic Mode                                      Tunnel to Wireless Controller
IP/Network Mask                                10.10.110.1/24
Administrative Access                      Ping (to assist with testing)
DHCP Server                                     Enable
  Address Range 10.10.110.2 – 10.10.110.199
Netmask 255.255.255.0
Default Gateway Same As Interface IP
DNS Server Same as System DNS
SSID                                                 example_wifi
Security Mode                                   WPA2 Enterprise
Authentication                                  Local, select wlan_users user group.
Leave other settings at their default values.

To configure the SSID – CLI

config wireless-controller vap edit example_wifi_if set ssid “example_wifi” set broadcast-ssid enable set security wpa-enterprise set auth usergroup set usergroup wlan_users set schedule always

end config system interface

Basic wireless network

edit example_wifi_if set ip 10.10.110.1 255.255.255.0

end

config system dhcp server edit 0 set default-gateway 10.10.110.1

set dns-service default set interface “example_wifi_if” config ip-range edit 1 set end-ip 10.10.110.199 set start-ip 10.10.110.2

end

set netmask 255.255.255.0

end

Adding the SSID to the FortiAP Profile

The radio portion of the FortiAP configuration is contained in the FortiAP Profile. By default, there is a profile for each platform (FortiAP model). You can create additional profiles if needed. The SSID needs to be specified in the profile.

To add the SSID to the FortiAP Profile – web-based manager

  1. Go to WiFi & Switch Controller > FortiAP Profiles and edit the profile for your model of FortiAP unit.
  2. In Radio 1 and Radio 2, add example_wifi in SSID.
  3. Select OK.

Configuring security policies

A security policy is needed to enable WiFi users to access the Internet on port1. First you create firewall address for the WiFi network, then you create the example_wifi to port1 policy.

To create a firewall address for WiFi users – web-based manager

  1. Go to Policy & Objects > Addresses.
  2. Select Create New > Address, enter the following information and select OK.
Name wlan_user_net
Type IP/Netmask
Subnet / IP Range 10.10.110.0/24
Interface example_wifi_if
Show in Address List Enabled

To create a firewall address for WiFi users – CLI

config firewall address edit “wlan_user_net” set associated-interface “example_wifi_if” set subnet 10.10.110.0 255.255.255.0

Basic wireless network

end

To create a security policy for WiFi users – web-based manager

  1. Go to Policy & Objects > IPv4 Policyand select Create New.
  2. Enter the following information and select OK:
Incoming Interface                  example_wifi_if
Source Address                      wlan_user_net
Outgoing Interface                  port1
Destination Address                All
Schedule                                always
Service                                   ALL
Action                                    ACCEPT
NAT                                       ON. Select Use Destination Interface Address (default).
Leave other settings at their default values.

To create a firewall policy for WiFi users – CLI

config firewall policy edit 0 set srcintf “example_wifi” set dstintf “port1” set srcaddr “wlan_user_net” set dstaddr “all” set schedule always set service ALL set action accept set nat enable

end

Connecting the FortiAP units

You need to connect each FortiAP unit to the FortiGate unit, wait for it to be recognized, and then assign it to the AP Profile. But first, you must configure the interface to which the FortiAP units connect and the DHCP server that assigns their IP addresses.

In this example, the FortiAP units connect to port 3 and are controlled through IP addresses on the 192.168.8.0/24 network.

To configure the interface for the AP unit – web-based manager

  1. Go to Network > Interfaces and edit the port3 interface.
  2. Set the Addressing mode to Dedicated to Extension Device and set the IP/Network Mask to 168.8.1/255.255.255.0.
  3. Select OK.

Basic wireless network

This procedure automatically configures a DHCP server for the AP units.

To configure the interface for the AP unit – CLI

config system interface edit port3 set mode static

set ip 192.168.8.1 255.255.255.0

end

To configure the DHCP server for AP units – CLI

config system dhcp server edit 0 set interface port3 config exclude-range edit 1 set end-ip 192.168.8.1 set start-ip 192.168.8.1

end

config ip-range edit 1 set end-ip 192.168.8.254 set start-ip 192.168.8.2

end set netmask 255.255.255.0 set vci-match enable set vci-string “FortiAP”

end

To connect a FortiAP unit – web-based manager

  1. Go to WiFi & Switch Controller > Managed FortiAPs.
  2. Connect the FortiAP unit to port 3.
  3. Periodically select Refresh while waiting for the FortiAP unit to be listed.

Recognition of the FortiAP unit can take up to two minutes.

If FortiAP units are connected but cannot be recognized, try disabling VCI-Match in the DHCP server settings.

  1. When the FortiAP unit is listed, select the entry to edit it. The Edit Managed Access Point window opens.
  2. In State, select
  3. In FortiAP Profile, select the default profile for the FortiAP model.
  4. Select OK.
  5. Repeat Steps 2 through 8 for each FortiAP unit.

To connect a FortiAP unit – CLI

  1. Connect the FortiAP unit to port 3.
  2. Enter config wireless-controller wtp
  3. Wait 30 seconds, then enter get.

Retry the get command every 15 seconds or so until the unit is listed, like this:

== [ FAP22B3U10600118 ]

 

wtp-id: FAP22B3U10600118

  1. Edit the discovered FortiAP unit like this:

edit FAP22B3U10600118 set admin enable

end

  1. Repeat Steps 2 through 4 for each FortiAP unit.

A more complex example

This example creates multiple networks and uses custom AP profiles.

Scenario

In this example, Example Co. provides two wireless networks, one for its employees and the other for customers or other guests of its business. Guest users have access only to the Internet, not to the company’s private network. The equipment for these WiFi networks consists of FortiAP-220B units controlled by a FortiGate unit.

The employee network operates in 802.11n mode on both the 2.4GHz and 5GHz bands. Client IP addresses are in the 10.10.120.0/24 subnet, with 10.10.120.1 the IP address of the WAP. The guest network also operates in 802.11n mode, but only on the 2.4GHz band. Client IP addresses are on the 10.10.115.0/24 subnet, with 10.10.115.1 the IP address of the WAP.

On FortiAP-220B units, the 802.11n mode also supports 802.11g and 802.11b clients on the 2.4GHz band and 802.11a clients on the 5GHz band.

The guest network WAP broadcasts its SSID, the employee network WAP does not.

The employees network uses WPA-Enterprise authentication through a FortiGate user group. The guest network features a captive portal. When a guest first tries to connect to the Internet, a login page requests logon credentials. Guests use numbered guest accounts authenticated by RADIUS. The captive portal for the guests includes a disclaimer page.

In this example, the FortiAP units connect to port 3 and are assigned addresses on the 192.168.8.0/24 subnet.

Configuration

To configure these wireless networks, you must:

l Configure authentication for wireless users l Configure the SSIDs (network interfaces) l Configure the AP profile l Configure the WiFi LAN interface and a DHCP server l Configure firewall policies

Configuring authentication for employee wireless users

Employees have user accounts on the FortiGate unit. This example shows creation of one user account, but you can create multiple accounts and add them as members to the user group.

To configure a WiFi user – web-based manager

  1. Go to User & Device > User Definition and select Create New.
  2. Select Local User and then click Next.
  3. Enter a User Name and Password and then click Next.
  4. Click Next.
  5. Make sure that Enable is selected and then click Create.

To configure the user group for employee access – web-based manager

  1. Go to User & Device > User Groups and select Create New.
  2. Enter the following information and then select OK:
Name employee-group
Type Firewall
Members Add users.

To configure a WiFi user and the user group for employee access – CLI

config user user edit “user01” set type password set passwd “asdf12ghjk”

end

config user group edit “employee-group” set member “user01”

end

The user authentication setup will be complete when you select the employee-group in the SSID configuration.

Configuring authentication for guest wireless users

Guests are assigned temporary user accounts created on a RADIUS server. The RADIUS server stores each user’s group name in the Fortinet-Group-Name attribute. Wireless users are in the group named “wireless”.

The FortiGate unit must be configured to access the RADIUS server.

To configure the FortiGate unit to access the guest RADIUS server – web-based manager

  1. Go to User & Device > RADIUS Servers and select Create New.
  2. Enter the following information and select OK:
Name guestRADIUS
Primary Server IP/Name 10.11.102.100
Primary Server Secret grikfwpfdfg
Secondary Server IP/Name Optional
Secondary Server Secret         Optional
Authentication Scheme          Use default, unless server requires otherwise.
Leave other settings at their default values.

To configure the FortiGate unit to access the guest RADIUS server – CLI

config user radius edit guestRADIUS set auth-type auto set server 10.11.102.100 set secret grikfwpfdfg

end

To configure the user group for guest access – web-based manager

  1. Go to User & Device > User Groups and select Create New.
  2. Enter the following information and then select OK:
Name guest-group
Type Firewall
Members Leave empty.
  1. Select Create new.
  2. Enter:
Remote Server Select guestRADIUS.
Groups Select wireless
  1. Select OK.

To configure the user group for guest access – CLI

config user group edit “guest-group” set member “guestRADIUS” config match

edit 0 set server-name “guestRADIUS” set group-name “wireless”

end

end

The user authentication setup will be complete when you select the guest-group user group in the SSID configuration.

Configuring the SSIDs

First, establish the SSIDs (network interfaces) for the employee and guest networks. This is independent of the number of physical access points that will be deployed. Both networks assign IP addresses using DHCP.

To configure the employee SSID – web-based manager

  1. Go to WiFi & Switch Controller > SSID and select Create New > SSID.
  2. Enter the following information and select OK:
Interface Name                       example_inc
Traffic Mode                           Tunnel to Wireless Controller
IP/Netmask                             10.10.120.1/24
Administrative Access            Ping (to assist with testing)
Enable DHCP                          Enable
  Address Range                     10.10.120.2 – 10.10.120.199
  Netmask                               255.255.255.0
  Default Gateway                   Same As Interface IP
  DNS Server                           Same as System DNS
SSID                                       example_inc
Security Mode                        WPA/WPA2-Enterprise
Authentication                        Select Local, then select employee-group.
Leave other settings at their default values.

To configure the employee SSID – CLI

config wireless-controller vap edit example_inc set ssid “example_inc” set security wpa-enterprise set auth usergroup set usergroup employee-group set schedule always

end

config system interface edit example_inc set ip 10.10.120.1 255.255.255.0

end

config system dhcp server edit 0 set default-gateway 10.10.120.1 set dns-service default set interface example_inc

config ip-range

edit 1

set end-ip 10.10.120.199 set start-ip 10.10.120.2

end

set lease-time 7200 set netmask 255.255.255.0

end

To configure the example_guest SSID – web-based manager

  1. Go to WiFi & Switch Controller > SSID and select Create New.
  2. Enter the following information and select OK:
Name                                     example_guest
IP/Netmask                             10.10.115.1/24
Administrative Access            Ping (to assist with testing)
Enable DHCP                          Enable
  Address Range                     10.10.115.2 – 10.10.115.50
  Netmask                               255.255.255.0
  Default Gateway                    Same as Interface IP
  DNS Server                           Same as System DNS
SSID                                       example_guest
Security Mode                        Captive Portal
Portal Type                             Authentication
Authentication Portal              Local
User Groups                           Select guest-group
Leave other settings at their default values.

To configure the example_guest SSID – CLI

config wireless-controller vap edit example_guest

set ssid “example_guest” set security captive-portal set selected-usergroups guest-group set schedule always

end

config system interface

edit example_guest

set ip 10.10.115.1 255.255.255.0

end

config system dhcp server

edit 0

set default-gateway 10.10.115.1 set dns-service default set interface “example_guest” config ip-range

edit 1 set end-ip 10.10.115.50 set start-ip 10.10.115.2

end

set lease-time 7200 set netmask 255.255.255.0

end

Configuring the FortiAP profile

The FortiAP Profile defines the radio settings for the networks. The profile provides access to both Radio 1 (2.4GHz) and Radio 2 (5GHz) for the employee virtual AP, but provides access only to Radio 1 for the guest virtual AP.

To configure the FortiAP Profile – web-based manager

  1. Go to WiFi & Switch Controller > FortiAP Profiles and select Create New.
  2. Enter the following information and select OK:
Name example_AP
Platform FAP220B
Radio 1  
  Mode Access Point
  Band 802.11n
  Channel Select 1, 6, and 11.
  Tx Power 100%
  SSID Select SSIDs and select example_inc and example_guest.
Radio 2  
  Mode Access Point
  Band 802.11n_5G
  Channel Select all.
  Tx Power 100%
  SSID Select SSIDs and select example_inc.

To configure the AP Profile – CLI

config wireless-controller wtp-profile edit “example_AP” config platform

set type 220B

end config radio-1 set ap-bgscan enable set band 802.11n set channel “1” “6” “11” set vaps “example_inc” “example_guest”

end config radio-2 set ap-bgscan enable set band 802.11n-5G

set channel “36” “40” “44” “48” “149” “153” “157” “161” “165” set vaps “example_inc” end

Configuring firewall policies

Identity-based firewall policies are needed to enable the WLAN users to access the Internet on Port1. First you create firewall addresses for employee and guest users, then you create the firewall policies.

To create firewall addresses for employee and guest WiFi users

  1. Go to Policy & Objects > Addresses.
  2. Select Create New, enter the following information and select OK.
Address Name   employee-wifi-net
Type   Subnet / IP Range
Subnet / IP Range   10.10.120.0/24
Interface   example_inc
  1. Select Create New, enter the following information and select OK.
Address Name guest-wifi-net
Type Subnet / IP Range
Subnet / IP Range 10.10.115.0/24
Interface example_guest

To create firewall policies for employee WiFi users – web-based manager

  1. Go to Policy & Objects > IPv4 Policy and select Create New.
  2. Enter the following information and select OK:
Incoming Interface example_inc
Source Address employee-wifi-net
Outgoing Interface port1
Destination Address all
Schedule always
Service ALL
Action ACCEPT
NAT Enable NAT
  1. Optionally, select security profile for wireless users.
  2. Select OK.
  3. Repeat steps 1 through 4 but select Internal as the Destination Interface/Zone to provides access to the ExampleCo private network.

To create firewall policies for employee WiFi users – CLI

config firewall policy edit 0 set srcintf “employee_inc” set dstintf “port1” set srcaddr “employee-wifi-net” set dstaddr “all” set action accept set schedule “always” set service “ANY” set nat enable set schedule “always” set service “ANY”

next edit 0 set srcintf “employee_inc” set dstintf “internal” set srcaddr “employee-wifi-net” set dstaddr “all” set action accept set schedule “always” set service “ANY” set nat enable set schedule “always” set service “ANY”

end

To create a firewall policy for guest WiFi users – web-based manager

  1. Go to Policy & Objects > IPv4 Policy and select Create New.
  2. Enter the following information and select OK:
Incoming Interface example_guest
Source Address guest-wifi-net
Outgoing Interface port1
Destination Address all
Schedule always
Service ALL
Action ACCEPT
NAT Enable NAT
  1. Optionally, select UTM and set up UTM features for wireless users.
  2. Select OK.

To create a firewall policy for guest WiFi users – CLI

config firewall policy edit 0 set srcintf “example_guest” set dstintf “port1” set srcaddr “guest-wifi-net” set dstaddr “all” set action accept set schedule “always” set service “ANY” set nat enable

end

Connecting the FortiAP units

You need to connect each FortiAP-220A unit to the FortiGate unit, wait for it to be recognized, and then assign it to the AP Profile. But first, you must configure the interface to which the FortiAP units connect and the DHCP server that assigns their IP addresses.

In this example, the FortiAP units connect to port 3 and are controlled through IP addresses on the 192.168.8.0/24 network.

To configure the interface for the AP unit – web-based manager

  1. Go to Network > Interfaces and edit the port3 interface.
  2. Set the Addressing mode to Dedicated to Extension Device and set the IP/Netmask to

192.168.8.1/255.255.255.0.

This step automatically configures a DHCP server for the AP units.

  1. Select OK.

To configure the interface for the AP unit – CLI

config system interface edit port3 set mode static

set ip 192.168.8.1 255.255.255.0 end

To configure the DHCP server for AP units – CLI

config system dhcp server edit 0 set interface port3 config ip-range

edit 1 set end-ip 192.168.8.9 set start-ip 192.168.8.2

end

set netmask 255.255.255.0 set vci-match enable set vci-string “FortiAP”

end

To connect a FortiAP-220A unit – web-based manager

  1. Go to WiFi & Switch Controller > Managed FortiAPs.
  2. Connect the FortiAP unit to port 3.
  3. Periodically select Refresh while waiting for the FortiAP unit to be listed.

Recognition of the FortiAP unit can take up to two minutes.

If there is persistent difficulty recognizing FortiAP units, try disabling VCI-Match in the DHCP server settings.

  1. When the FortiAP unit is listed, select the entry to edit it. The Edit Managed Access Point window opens.
  2. In State, select
  3. In the AP Profile, select [Change] and then select the example_AP
  4. Select OK.
  5. Repeat Steps 2 through 8 for each FortiAP unit.

To connect a FortiAP-220A unit – CLI

  1. Connect the FortiAP unit to port 3.
  2. Enter:

config wireless-controller wtp

  1. Wait 30 seconds, then enter get.

Retry the get command every 15 seconds or so until the unit is listed, like this:

== [ FAP22A3U10600118 ] wtp-id: FAP22A3U10600118

  1. Edit the discovered FortiAP unit like this:

edit FAP22A3U10600118 set admin enable set wtp-profile example_AP

end

  1. Repeat Steps 2 through 4 for each FortiAP unit.

 

Configuring wireless network clients

Configuring wireless network clients

This chapter shows how to configure typical wireless network clients to connect to a wireless network with WPAEnterprise security.

Windows XP client

Windows 7 client

Mac OS client

Linux client

Troubleshooting

Windows XP client

To configure the WPA-Enterprise network connection

  1. In the Windows Start menu, go to Control Panel > Network Connections > Wireless Network Connection or select the wireless network icon in the Notification area of the Taskbar. A list of available networks is displayed.

Windows XP

If you are already connected to another wireless network, the Connection Status window displays. Select View Wireless Networks on the General tab to view the list.

If the network broadcasts its SSID, it is listed. But do not try to connect until you have completed the configuration step below. Because the network doesn’t use the Windows XP default security configuration, configure the client’s network settings manually before trying to connect.

  1. You can configure the WPA-Enterprise network to be accessible from the View Wireless Networks window even if it does not broadcast its SSID.
  2. Select Change Advanced Settings and then select the Wireless Networks

Any existing networks that you have already configured are listed in the Preferred Networks list.

 

Windows XP client

  1. Select Add and enter the following information:
Network Name (SSID) The SSID for your wireless network
Network Authentication WPA2
Data Encryption AES
  1. If this wireless network does not broadcast its SSID, select Connect even if this network is not broadcasting so that the network will appear in the View Wireless Networks

Windows XP

  1. Select the Authentication
  2. In EAP Type, select Protected EAP (PEAP).
  3. Make sure that the other two authentication options are not selected.

Windows XP client

  1. Select Properties.
  2. Make sure that Validate server certificate is selected.
  3. Select the server certificate Entrust Root Certification Authority.
  4. In Select Authentication Method, select Secured Password (EAP-MSCHAPv2).
  5. Ensure that the remaining options are not selected.
  6. Select Configure.
  7. If your wireless network credentials are the same as your Windows logon credentials, select Automatically use my Windows logon name and password. Otherwise, make sure that this option is not selected.
  8. Select OK. Repeat until you have closed all of the Wireless Network Connection Properties

Windows 7

To connect to the WPA-Enterprise wireless network

  1. Select the wireless network icon in the Notification area of the Taskbar.
  2. In the View Wireless Networks list, select the network you just added and then select Connect. You might need to log off of your current wireless network and refresh the list.
  3. When the following popup displays, click on it.
  4. In the Enter Credentials window, enter your wireless network User name, Password, and Logon domain (if applicable). Then, select OK.

In future, Windows will automatically send your credentials when you log on to this network.

Windows 7 client

  1. In the Windows Start menu, go to Control Panel > Network and Internet > Network and Sharing Center > Manage Wireless Networks or select the wireless network icon in the Notification area of the Taskbar. A list of available networks is displayed.

Windows 7 client

  1. Do one of the following:

l If the wireless network is listed (it broadcasts its SSID), select it from the list. l Select Add > Manually create a network profile.

Windows 7

  1. Enter the following information and select Next.
Network name Enter the SSID of the wireless network. (Required only if you selected Add.)
Security type WPA2-Enterprise
Encryption type AES
Start this connection automatically Select
Connect even if the network is not broadcasting. Select

The Wireless Network icon will display a popup requesting that you click to enter credentials for the network. Click on the popup notification.

  1. In the Enter Credentials window, enter your wireless network User name, Password, and Logon domain (if applicable). Then, select OK.
  2. Select Change connection settings.
  3. On the Connection tab, select Connect automatically when this network is in range.
  4. On the Security tab, select the Microsoft PEAP authentication method and then select Settings.

Windows 7 client

  1. Make sure that Validate server certificate is selected.
  2. Select the server certificate Entrust Root Certification Authority.
  3. In Select Authentication Method, select Secured Password (EAP-MSCHAPv2).
  4. Select Configure.
  5. If your wireless network credentials are the same as your Windows logon credentials, select Automatically use my Windows logon name and password. Otherwise, make sure that this option is not selected.
  6. Ensure that the remaining options are not selected.
  7. Select OK. Repeat until you have closed all of the Wireless Network Properties

Mac OS

Mac OS client

To configure network preferences

  1. Right-click the AirPort icon in the toolbar and select Open Network Preferences.
  2. Select Advanced and then select the 1X tab.
  3. If there are no Login Window Profiles in the left column, select the + button and then select Add Login Window

Profile.

  1. Select the Login Window Profile and then make sure that both TTLS and PEAP are selected in Authentication.

To configure the WPA-Enterprise network connection

  1. Select the AirPort icon in the toolbar.
  2. Do one of the following:

l If the network is listed, select the network from the list. l Select Connect to Other Network.

One of the following windows opens, depending on your selection.

Mac OS client

  1. Enter the following information and select OK or Join:
Network name Enter the SSID of your wireless network. (Other network only)
Wireless Security WPA Enterprise
802.1X Automatic
Username Password Enter your logon credentials for the wireless network.
Remember this network Select.

You are connected to the wireless network.

Linux

Linux client

This example is based on the Ubuntu 10.04 Linux wireless client.

To connect to a WPA-Enterprise network

  1. Select the Network Manager icon to view the Wireless Networks menu.

Wireless networks that broadcast their SSID are listed in the Available section of the menu. If the list is long, it is continued in the More Networks submenu.

  1. Do one of the following:
    • Select the network from the list (also check More Networks).
    • Select Connect to Hidden Wireless Network.

One of the following windows opens, depending on your selection.

Linux client

  1. Enter the following information:
Connection Leave as New. (Hidden network only)
Network name Enter the SSID of your wireless network. (Hidden network only)
Wireless Security WPA & WPA2 Enterprise
Authentication Protected EAP (PEAP) for RADIUS-based authentication

Tunneled TLS for TACACS+ or LDAP-based authentication

Anonymous identity This is not required.
CA Certificate If you want to validate the AP’s certificate, select the Entrust Root Certification Authority root certificate. The default location for the certificate is /usr/share/ca-certificates/mozilla/.
PEAP version Automatic (applies only to PEAP)
Inner authentication MSCHAPv2 for RADIUS-based authentication

PAP or CHAP for TACACS+ or LDAP-based authentication

Username Password Enter your logon credentials for the wireless network.

 

Troubleshooting

  1. If you did not select a CA Certificate above, you are asked to do so. Select Ignore.
  2. Select You are connected to the wireless network.

To connect to a WPA-Enterprise network

  1. Select the Network Manager icon to view the Wireless Networks menu.
  2. Select the network from the list (also check More Networks).

If your network is not listed (but was configured), select Connect to Hidden Wireless Network, select your network from the Connection drop-down list, and then select Connect.

Troubleshooting

Using tools provided in your operating system, you can find the source of common wireless networking problems.

Checking that client received IP address and DNS server information

Windows XP

  1. Double-click the network icon in the taskbar to display the Wireless Network Connection Status

Check that the correct network is listed in the Connection section.

  1. Select the Support

Check that the Address Type is Assigned by DHCP. Check that the IP Address, Subnet Mask, and Default Gateway values are valid.

  1. Select Details to view the DNS server addresses.

The listed address should be the DNS serves that were assigned to the WAP. Usually a wireless network that provides access to the private LAN is assigned the same DNS servers as the wired private LAN. A wireless network that provides guest or customer users access to the Internet is usually assigned public DNS servers.

  1. If any of the addresses are missing, select Repair.

If the repair procedure doesn’t correct the problem, check your network settings.

Mac OS

  1. From the Apple menu, open System Preferences > Network.
  2. Select AirPort and then select Configure.

Troubleshooting

  1. On the Network page, select the TCP/IP
  2. If there is no IP address or the IP address starts with 169, select Renew DHCP Lease.
  3. To check DNS server addresses, open a terminal window and enter the following command:

cat /etc/resolv.conf

Check the listed nameserver addresses. A network for employees should us the wired private LAN DNS server. A network for guests should specify a public DNS server.

Linux

This example is based on the Ubuntu 10.04 Linux wireless client.

Troubleshooting

  1. Right-click the Network Manager icon and select Connection Information.
  2. Check the IP address, and DNS settings. If they are incorrect, check your network settings.

 

Combining WiFi and wired networks with a software switch

Combining WiFi and wired networks with a software switch

Combining WiFi and wired networks with a software switch

FortiAP local bridging (Private cloud-managed AP)

Using bridged FortiAPs to increase scalability

Combining WiFi and wired networks with a software switch

A WiFi network can be combined with a wired LAN so that WiFi and wired clients are on the same subnet. This is a convenient configuration for users. Note that software switches are only available if your FortiGate is in Interface mode.

To create the WiFi and wired LAN configuration, you need to:

  • Configure the SSID so that traffic is tunneled to the WiFi controller.
  • Configure a software switch interface on the FortiGate unit with the WiFi and internal network interface as members. l Configure Captive Portal security for the software switch interface.

To configure the SSID – web-based manager

  1. Go to WiFi & Switch Controller > SSID and select Create New.
  2. Enter:
Interface name A name for the new WiFi interface, homenet_if for example.
Traffic Mode Tunnel to Wireless Controller
SSID The SSID visible to users, homenet for example.
Security Mode

Data Encryption

Preshared Key

Configure security as you would for a regular WiFi network.
  1. Select OK.
  2. Go to WiFi & Switch Controller > Managed FortiAPs, select the FortiAP unit for editing.
  3. Authorize the FortiAP unit.

The FortiAP unit can carry regular SSIDs in addition to the Bridge SSID.

To configure the SSID – CLI

This example creates a WiFi interface “homenet_if” with SSID “homenet” using WPA-Personal security, passphrase “Fortinet1”.

config wireless-controller vap edit “homenet_if” set vdom “root” set ssid “homenet” set security wpa-personal set passphrase “Fortinet1”

end

config wireless-controller wtp edit FAP22B3U11005354 set admin enable set vaps “homenet_if”

end

To configure the FortiGate software switch – web-based manager

  1. Go to Network > Interfaces and select Create New > Interface.
  2. Enter:
Interface Name A name for the new interface, homenet_nw for example.
Type Software Switch
Physical Interface Members Add homenet_if and the internal network interface.
Addressing mode Select Manual and enter an address, for example 172.16.96.32/255.255.255.0
DHCP Server Enable and configure an address range for clients.
Security Mode Select Captive Portal. Add the permitted User Groups.
  1. Select OK.

To configure the FortiGate unit – CLI

config system interface edit homenet_nw set ip 172.16.96.32 255.255.255.0 set type switch set security-mode captive-portal set security-groups “Guest-group”

end

config system interface edit homenet_nw set member “homenet_if” “internal” end

FortiAP local bridging (Private cloud-managed AP)

VLAN configuration

If your environment uses VLAN tagging, you assign the SSID to a specific VLAN in the CLI. For example, to assign the homenet_if interface to VLAN 100, enter:

config wireless-controller vap edit “homenet_if” set vlanid 100

end

Additional configuration

The configuration described above provides communication between WiFi and wired LAN users only. To provide access to other networks, create appropriate firewall policies between the software switch and other interfaces.

FortiAP local bridging (Private cloud-managed AP)

A FortiAP unit can provide WiFi access to a LAN, even when the wireless controller is located remotely. This configuration is useful for the following situations:

  • Installations where the WiFI controller is remote and most of the traffic is local or uses the local Internet gateway l Wireless-PCI compliance with remote WiFi controller
  • Telecommuting, where the FortiAP unit has the WiFi controller IP address pre-configured and broadcasts the office SSID in the user’s home or hotel room. In this case, data is sent in the wireless tunnel across the Internet to the office and you should enable encryption using DTLS.

FortiAP local bridging (Private cloud-managed AP)

Remotely-managed FortiAP providing WiFi access to local network

On the remote FortiGate wireless controller, the WiFi SSID is created with the Bridge with FortiAP Interface option selected. In this mode, no IP addresses are configured. The WiFi and Ethernet interfaces on the FortiAP behave as a switch. WiFi client devices obtain IP addresses from the same DHCP server as wired devices on the LAN.

The local bridge feature cannot be used in conjunction with Wireless Mesh features.

Block-Intra-SSID Traffic is available in Bridge mode. This is useful in hotspotdeployments managed by a central FortiGate, but would also be useful in cloud deployments. Previously, this was only supported in Tunnel mode.

To configure a FortiAP local bridge – web-based manager

  1. Go to WiFi & Switch Controller > SSID and select Create New > SSID.
  2. Enter:
Interface name A name for the new WiFi interface.
Traffic Mode Local bridge with FortiAP’s Interface
SSID The SSID visible to users.

 

Security Mode

Data Encryption

Preshared Key

Configure security as you would for a regular WiFi network.
  1. Select OK.
  2. Go to WiFi & Switch Controller > Managed FortiAPs and select the FortiAP unit for editing.
  3. Authorize the FortiAP unit.

The FortiAP unit can carry regular SSIDs in addition to the Bridge SSID.

SSID configured for local bridge operation

To configure a FortiAP local bridge – CLI

This example creates a WiFi interface “branchbridge” with SSID “LANbridge” using WPA-Personal security, passphrase “Fortinet1”.

config wireless-controller vap edit “branchbridge” set vdom “root” set ssid “LANbridge” set local-bridging enable set security wpa-personal set passphrase “Fortinet1”

end

config wireless-controller wtp edit FAP22B3U11005354 set admin enable set vaps “branchbridge” end

Using bridged FortiAPs to increase scalability

Continued FortiAP operation when WiFi controller connection is down

The wireless controller, or the connection to it, might occasionally become unavailable. During such an outage, clients already associated with a bridge mode FortiAP unit continue to have access to the WiFi and wired networks. Optionally, the FortiAP unit can also continue to authenticate users if the SSID meets these conditions:

  • Traffic Mode is Local bridge with FortiAP’s Interface.

In this mode, the FortiAP unit does not send traffic back to the wireless controller.

  • Security Mode is WPA2 Personal.

These modes do not require the user database. In WPA2 Personal authentication, all clients use the same preshared key which is known to the FortiAP unit.

  • Allow New WiFi Client Connections When Controller is down is enabled. This field is available only if the other conditions have been met.

The “LANbridge” SSID example would be configured like this in the CLI:

config wireless-controller vap edit “branchbridge” set vdom “root” set ssid “LANbridge” set local-bridging enable set security wpa-personal set passphrase “Fortinet1” set local-authentication enable

end

Using bridged FortiAPs to increase scalability

The FortiGate wireless controller can support more FortiAP units in local bridge mode than in the normal mode. But this is only true if you configure some of your FortiAP units to operate in remote mode, which supports only local bridge mode SSIDs.

The Managed FortAP page (WiFi & Switch Controller > Managed FortiAPs) shows at the top right the current number of Managed FortiAPs and the maximum number that can be managed, “5/64” for example. The maximum number, however, is true only if all FortiAP units operate in remote mode. For more detailed information, consult the Maximum Values Table. For each FortiGate model, there are two maximum values for managed FortiAP units: the total number of FortiAPs and the number of FortiAPs that can operate in normal mode.

Using bridged FortiAPs to increase scalability

To configure FortiAP units for remote mode operation

  1. Create at least one SSID with Traffic Mode set to Local bridge with FortiAP’s Interface.
  2. Create a custom AP profile that includes only local bridge SSIDs.
  3. Configure each managed FortiAP unit to use the custom AP profile. You also need to set the FortiAP unit’s wtpmode to remote, which is possible only in the CLI. The following example uses the CLI both to set wtp-mode and select the custom AP profile:

config wireless-controller wtp edit FAP22B3U11005354 set wtp-mode remote set wtp-profile 220B_bridge end

 

Wireless mesh

Wireless mesh

The access points of a WiFi network are usually connected to the WiFi controller through Ethernet wiring. A wireless mesh eliminates the need for Ethernet wiring by connecting WiFi access points to the controller by radio. This is useful where installation of Ethernet wiring is impractical.

Overview of Wireless mesh

Configuring a meshed WiFi network

Configuring a point-to-point bridge

Overview of Wireless mesh

The figure below shows a wireless mesh topology.

A wireless mesh is a multiple AP network in which only one FortiAP unit is connected to the wired network. The other FortiAPs communicate with the controller over a separate backhaul SSID that is not available to regular WiFi clients. The AP that is connected to the network by Ethernet is called the Mesh Root node. The backhaul SSID carries CAPWAP discovery, configuration, and other communications that would usually be carried on an Ethernet connection.

The root node can be a FortiAP unit or the built-in AP of a FortiWiFi unit. APs that serve regular WiFi clients are called Leaf nodes. Leaf APs also carry the mesh SSID for more distant leaf nodes. A leaf node can connect to the mesh SSID directly from the root node or from any of the other leaf nodes. This provides redundancy in case of an AP failure.

All access points in a wireless mesh configuration must have at least one of their radios configured to provide mesh backhaul communication. As with wired APs, when mesh APs start up they can be discovered by a FortiGate or FortiWiFi unit WiFi controller and authorized to join the network.

Overview of

The backhaul SSID delivers the best performance when it is carried on a dedicated radio. On a two-radio FortiAP unit, for example, the 5GHz radio could carry only the backhaul SSID while the 2.4GHz radio carries one or more SSIDs that serve users. Background WiFi scanning is possible in this mode.

The backhaul SSID can also share the same radio with SSIDs that serve users. Performance is reduced because the backhaul and user traffic compete for the available bandwidth. Background WiFi scanning is not available in this mode. One advantage of this mode is that a two-radio AP can offer WiFi coverage on both bands.

Wireless mesh deployment modes

There are two common wireless mesh deployment modes:

Wireless Mesh Access points are wirelessly connected to a FortiGate or FortiWiFi unit WiFi controller. WiFi users connect to wireless SSIDs in the same way as on non-mesh WiFi networks.
Wireless bridging Two LAN segments are connected together over a wireless link (the backhaul SSID).

On the leaf AP, the Ethernet connection can be used to provide a wired network. Both WiFi and wired users on the leaf AP are connected to the LAN segment to which the root AP is connected.

Firmware requirements

All FortiAP units that will be part of the wireless mesh network must be upgraded to FAP firmware version 5.0 build 003. FortiAP-222B units must have their BIOS upgraded to version 400012. The FortiWiFi or FortiGate unit used as the WiFi controller must be running FortiOS 5.0.

Types of wireless mesh

A WiFi mesh can provide access to widely-distributed clients. The root mesh AP which is directly connected to the WiFi controller can be either a FortiAP unit or the built-in AP of a FortiWiFi unit that is also the WiFi controller.

FortiAP units used as both mesh root AP and leaf AP

Overview of Wireless mesh

FortiWiFi unit as root mesh AP with FortiAP units as leaf APs

An alternate use of the wireless mesh functionality is as a point-to-point relay. Both wired and WiFi users on the leaf AP side are connected to the LAN segment on the root mesh side.

Overview of

Point-to-point wireless mesh

Fast-roaming for mesh backhaul link

Mesh implementations for leaf FortiAP can perform background scan when the leaf AP is associated to root. Various options for background scanning can be configured with the CLI. See Mesh variables on page 189 for more details.

Configuring a meshed WiFi network

You need to:

  • Create the mesh root SSID. l Create the FortiAP profile. l Configure mesh leaf AP units. l Configure the mesh root AP, either a FortiWiFi unit’s Local Radio or a FortiAP unit. l Authorize the mesh branch/leaf units when they connect to the WiFi Controller.
  • Create security policies.

This section assumes that the end-user SSIDs already exist.

Creating the mesh root SSID

The mesh route SSID is the radio backhaul that conveys the user SSID traffic to the leaf FortiAPs.

To configure the mesh root SSID

  1. Go to WiFi & Switch Controller > SSID and select Create New > SSID.
  2. Enter a Name for the WiFi interface.
  3. In Traffic Mode, select Mesh Downlink.
  4. Enter the SSID.
  5. Set Security Mode to WPA2 Personal and enter the Pre-shared key.

Remember the key, you need to enter it into the configurations of the leaf FortiAPs.

  1. Select OK.

Creating the FortiAP profile

Create a FortiAP profile for the meshed FortiAPs. If more than one FortiAP model is involved, you need to create a profile for each model. Typically, the profile is configured so that Radio 1 (5GHz) carries the mesh backhaul SSID while Radio 2 (2.4GHz) carries the SSIDs to which users connect.

The radio that carries the backhaul traffic must not carry other SSIDs. Use the Select SSIDs option and choose only the backhaul SSID. Similarly, the radio that carries user SSIDs, should not carry the backhaul. Use the Select SSIDs option and choose the networks that you want to provide.

For more information, see Configuring a WiFi LAN on page 30.

Configuring the mesh root FortiAP

The mesh root AP can be either a FortiWiFi unit’s built-in AP or a FortiAP unit.

Configuring a meshed WiFi network

To enable a FortiWiFi unit’s Local Radio as mesh root – web-based manager

  1. Go to WiFi Controller > Local WiFi Radio.
  2. Select Enable WiFi Radio.
  3. In SSID, select Select SSIDs, then select the mesh root SSID.
  4. Optionally, adjust TX Power or select Auto Tx Power Control.
  5. Select Apply.

In a network with multiple wireless controllers, make sure that each mesh root has a unique SSID. Other controllers using the same mesh root SSID might be detected as fake or rogue APs. Go to WiFi & Switch Controller > SSID to change the SSID.

To configure a network interface for the mesh root FortiAP unit

  1. On the FortiGate unit, go to Network > Interfaces.
  2. Select the interface where you will connect the FortiAP unit, and edit it.
  3. Make sure that Role is LAN.
  4. In Addressing mode, select Dedicated to Extension Device.
  5. In IP/Network Mask, enter an IP address and netmask for the interface.

DHCP will provide addresses to connected devices. To maximize the number of available addresses, the interface address should end with 1, for example 192.168.10.1.

  1. Select OK.

At this point you can connect the mesh root FortiAP, as described next. If you are going to configure leaf FortiAPs through the wireless controller (see “Configuring a meshed WiFi network” on page 82), it would be convenient to leave connecting the root unit for later.

To enable the root FortiAP unit

  1. Connect the root FortiAP unit’s Ethernet port to the FortiGate network interface that you configured for it.
  2. Go to WiFi & Switch Controller > Managed FortiAPs.

If the root FortiAP unit is not listed, wait 15 seconds and select Refresh. Repeat if necessary. If the unit is still missing after a minute or two, power cycle the root FortiAP unit and try again.

  1. Right-click the FortiAP entry and choose your profile from the Assign Profile
  2. Right-click the FortiAP entry and select Authorize.

Initially, the State of the FortiAP unit is Offline. Periodically click Refresh to update the status. Within about two minutes, the state changes to Online.

  1. Select OK.

You might need to select Refresh a few times before the FortiAP shows as Online.

Configuring the leaf mesh FortiAPs

The FortiAP units that will serve as leaf nodes must be preconfigured. This involves changing the FortiAP unit internal configuration.You can do this by direct connection or through the FortiGate wireless controller. meshed WiFi network

Method 1: Direct connection to the FortiAP

  1. Connect a computer to the FortiAP unit’s Ethernet port. Configure the computer’s IP as 192.168.1.3.
  2. Telnet to 192.168.1.2. Login as admin. By default, no password is set.
  3. Enter the following commands, substituting your own SSID and password (pre-shared key):

cfg -a MESH_AP_TYPE=1 cfg -a MESH_AP_SSID=fortinet.mesh.root cfg -a MESH_AP_PASSWD=hardtoguess

cfg -c exit

  1. Disconnect the computer.
  2. Power down the FortiAP.
  3. Repeat the preceding steps for each branch FortiAP.

Method 2: Connecting through the FortiGate unit

  1. Connect the branch FortiAP unit’s Ethernet port to the FortiGate network interface that you configured for FortiAPs. Connect the FortiAP unit to a power source unless POE is used.
  2. Go to WiFi & Switch Controller > Managed FortiAPs.

If the FortiAP unit is not listed, wait 15 seconds and select Refresh. Repeat if necessary. If the unit is still missing after a minute or two, power cycle the FortiAP unit and try again.

  1. Select the discovered FortiAP unit and authorize it. Click Refresh every 10 seconds until the State indicator is green.
  2. Right-click the FortiAP and select >_Connect to CLI. The CLI Console window opens. Log in as “admin”.
  3. Enter the following commands, substituting your own SSID and password (pre-shared key):

cfg -a MESH_AP_TYPE=1 cfg -a MESH_AP_SSID=fortinet.mesh.root cfg -a MESH_AP_PASSWD=hardtoguess

cfg -c exit

  1. Disconnect the branch FortiAP and delete it from the Managed FortiAP list.
  2. Repeat the preceding steps for each branch FortiAP.

Authorizing leaf APs

When the root FortiAP is connected and online, apply power to the pre-configured leaf FortiAPs. The leaf FortiAPs will connect themselves wirelessly to the WiFi Controller through the mesh network. You must authorize each unit.

  1. Go to WiFi & Switch Controller > Managed FortiAPs. Periodically select Refresh until the FortiAP unit is listed. This can take up to three minutes.

The State of the FortiAP unit should be Waiting for Authorization.

  1. Right-click the FortiAP entry and choose your profile from the Assign Profile
  2. Right-click the FortiAP entry and select Authorize.

Initially, the State of the FortiAP unit is Offline. Periodically click Refresh to update the status. Within about two minutes, the state changes to Online.

Creating security policies

You need to create security policies to permit traffic to flow from the end-user WiFi network to the network interfaces for the Internet and other networks. Enable NAT.

Viewing the status of the mesh network

Go to WiFi & Switch Controller > Managed FortiAPs to view the list of APs.

The Connected Via field lists the IP address of each FortiAP and uses icons to show whether the FortiAP is connected by Ethernet or Mesh.

Ethernet
Mesh

If you mouse over the Connected Via information, a topology displays, showing how the FortiGate wireless controller connects to the FortiAP.

Configuring a point-to-point bridge

You can create a point-to-point bridge to connect two wired network segments using a WiFi link. The effect is the same as connecting the two network segments to the same wired switch.

You need to:

point-to-point bridge

l Configure a backhaul link and root mesh AP as described in Configuring a point-to-point bridge on page 84.

Note: The root mesh AP for a point-to-point bridge must be a FortiAP unit, not the internal AP of a FortiWiFi unit. l Configure bridging on the leaf AP unit.

To configure the leaf AP unit for bridged operation – FortiAP web-based manager

  1. With your browser, connect to the FortiAP unit web-based manager.

You can temporarily connect to the unit’s Ethernet port and use its default address: 192.168.1.2.

  1. Enter:
Operation Mode Mesh
Mesh AP SSID fortinet-ap
Mesh AP Password fortinet
Ethernet Bridge Select
  1. Select Apply.
  2. Connect the local wired network to the Ethernet port on the FortiAP unit.

Users are assigned IP addresses from the DHCP server on the wired network connected to the root mesh AP unit.

To configure a FortiAP unit as a leaf AP – FortiAP CLI

cfg -a MESH_AP_SSID=fortinet-ap cfg -a MESH_AP_PASSWD=fortinet cfg -a MESH_ETH_BRIDGE=1 cfg -a MESH_AP_TYPE=1 cfg -c

 

Hotspot 2.0

Hotspot 2.0 Access Network Query Protocol (ANQP) is a query and response protocol that defines seamless roaming services offered by an AP. The following CLI commands are available under config wirelesscontroller, to configure Hotspot 2.0 ANQP.

Syntax

config wireless-controller hotspot20 anqp-3gpp-cellular edit {name} config mcc-mnc-list edit {id} set id {integer} set mcc {string} set mnc {string}

next

next

end

config wireless-controller hotspot20 anqp-ip-address-type edit {name} set ipv6-address-type {option} set ipv4-address-type {option}

next

end

config wireless-controller hotspot20 anqp-nai-realm edit {name} config nai-list edit {name} set encoding {enable | disable} set nai-realm {string} config eap-method edit {index} set index {integer} set method {option} config auth-param edit {index} set index {integer} set id {option} set val {option}

next

next

next

next

end

config wireless-controller hotspot20 anqp-network-auth-type edit {name} set auth-type {option} set url {string}

next end

Hotspot 2.0

config wireless-controller hotspot20 anqp-roaming-consortium edit {name} config oi-list edit {index} set index {integer} set oi {string} set comment {string}

next

next

end

config wireless-controller hotspot20 anqp-venue-name edit {name} config value-list edit {index} set index {integer} set lang {string} set value {string}

next

next

end

config wireless-controller hotspot20 h2qp-conn-capability edit {name} set icmp-port {option} set ftp-port {option} set ssh-port {option} set http-port {option} set tls-port {option} set pptp-vpn-port {option} set voip-tcp-port {option} set voip-udp-port {option} set ikev2-port {option} set ikev2-xx-port {option} set esp-port {option}

next

end

config wireless-controller hotspot20 h2qp-operator-name edit {name} config value-list edit {index} set index {integer} set lang {string} set value {string}

next

next

end config wireless-controller hotspot20 h2qp-osu-provider

Configuring a point-to-point bridge

edit {name} config friendly-name edit {index} set index {integer} set lang {string} set friendly-name {string}

Configuring a point-to-point bridge                                                                                                         Hotspot 2.0

next set server-uri {string} set osu-method {option} set osu-nai {string} config service-description edit {service-id} set service-id {integer} set lang {string}

set service-description {string}

next

set icon {string}

next

end

config wireless-controller hotspot20 h2qp-wan-metric edit {name} set link-status {option} set symmetric-wan-link {option} set link-at-capacity {enable | disable} set uplink-speed {integer} set downlink-speed {integer} set uplink-load {integer} set downlink-load {integer} set load-measurement-duration {integer}

next

end

config wireless-controller hotspot20 hs-profile edit {name} set access-network-type {option} set access-network-internet {enable | disable} set access-network-asra {enable | disable} set access-network-esr {enable | disable} set access-network-uesa {enable | disable} set venue-group {option} set venue-type {option} set hessid {mac address} set proxy-arp {enable | disable} set l2tif {enable | disable} set pame-bi {enable | disable} set anqp-domain-id {integer} set domain-name {string} set osu-ssid {string} set gas-comeback-delay {integer} set gas-fragmentation-limit {integer} set dgaf {enable | disable} set deauth-request-timeout {integer} set wnm-sleep-mode {enable | disable} set bss-transition {enable | disable} set venue-name {string} set roaming-consortium {string} set nai-realm {string} set oper-friendly-name {string} config osu-provider edit {name} next set wan-metrics {string}

Hotspot 2.0                                                                                                         Configuring a point-to-point bridge

set network-auth {string} set 3gpp-plmn {string} set conn-cap {string} set qos-map {string} set ip-addr-type {string}

next

end

config wireless-controller hotspot20 icon edit {name} config icon-list edit {name} set lang {string} set file {string} set type {option} set width {integer} set height {integer}

next

next

end

config wireless-controller hotspot20 qos-map edit {name} config dscp-except edit {index} set index set dscp set up

next

config dscp-range edit {index} set index set up set low set high

next

next end

Access point deployment

Access point deployment

Overview

FortiAP units discover WiFi controllers. The administrator of the WiFi controller authorizes the FortiAP units that the controller will manage.

In most cases, FortiAP units can find WiFi controllers through the wired Ethernet without any special configuration. Review the following section, Access point deployment on page 55, to make sure that your method of connecting the FortiAP unit to the WiFi controller is valid. Then, you are ready to follow the procedures in Access point deployment on page 55.

If your FortiAP units are unable to find the WiFi controller, refer to Access point deployment on page 55 for detailed information about the FortiAP unit’s controller discovery methods and how you can configure them.

Network topology for managed APs

The FortiAP unit can be connected to the FortiGate unit in any of the following ways:

Direct connection: The FortiAP unit is directly connected to the FortiGate unit with no switches between them.

This configuration is common for locations where the number of FortiAP’s matches up with the number of

‘internal’ ports available on the FortiGate. In this configuration the FortiAP unit requests an IP address from the FortiGate unit, enters discovery mode and should quickly find the FortiGate WiFi controller. This is also known as a wirecloset deployment. See “Wirecloset and Gateway deployments” below.

 

Wirecloset deployment

Switched Connection: The FortiAP unit is connected to the FortiGate WiFi controller by an Ethernet switch operating in L2 switching mode or L3 routing mode. There must be a routable path between the FortiAP unit and the FortiGate unit and ports 5246 and 5247 must be open. This is also known as a gateway deployment. See Gateway Deployment below.

Gateway Deployment

Network topology for managed

Connection over WAN: The FortiGate WiFi controller is off-premises and connected by a VPN tunnel to a local FortiGate. In this method of connectivity its best to configure each FortiAP with the static IP address of the WiFi controller. Each FortiAP can be configured with three WiFi controller IP addresses for redundant failover. This is also known as a datacenter remote management deployment. See Remote deployment below.

Remote deployment