Category Archives: FortiOS 5.6

NAT in Transparent Mode

NAT in Transparent Mode

Similar to operating in NAT mode, when operating a FortiGate unit in Transparent mode you can add security policies and:

l Enable NAT to translate the source addresses of packets as they pass through the FortiGate unit. l Add virtual IPs to translate destination addresses of packets as they pass through the FortiGate unit. l Add IP pools as required for source address translation

A FortiGate unit operating in Transparent mode normally has only one IP address – the management IP. To support NAT in Transparent mode, you can add a second management IP. These two management IPs must be on different subnets. When you add two management IP addresses, all FortiGate unit network interfaces will respond to connections to both of these IP addresses.

Use the following steps to configure NAT in Transparent mode:

  1. Add two management IPs
  2. Add an IP pool to the WAN1 interface
  3. Add an Internal to WAN1 security policy

You can add the security policy from the web-based manager and then use the CLI to enable NAT and add the IP pool.

The usual practice of NATing in transparent mode makes use of two management IP addresses that are on different subnets, but this is not an essential requirement in every case.

If there is a router between the client systems and the FortiGate unit you can use the router’s capabilities of tracking sessions to assign NATed addresses from an IP pool to the clients even if the assigned address don’t belong to a subnet on your network.

 

Example

Client computer has an IP address of 1.1.1.33 on the subnet 1.1.1.0/24.

Router “A” sits between the client computer and the FortiGate (in Transparent mode) with the IP address of 1.1.1.1 on the client’s side of the router and the IP address of 192.168.1.211 on the FortiGate’s side of the router.

Use NAT to assign addresses from an address pool of 9.9.9.1 to 9.9.9.99 to traffic coming from gateway of 192.168.1.211.

To enable the return traffic to get to the original computer, set up a static route than assigns any traffic with a destination of 9.9.9.0/24 to go through the 192.168.1.211 gateway. As long as the session for the outgoing traffic has been maintained, communication between the client computer and the external system on the other side of the FortiGate will work.

.

Benefits of NAT

Benefits of NAT

More IP addresses Available while Conserving Public IP Addresses

As explained earlier, this was the original intent of the technology and does not need to be gone into further.

Financial Savings

Because an organization does not have to purchase IP addresses for every computer in use there is a significant cost savings due to using the process of Network Address Translation.

Security Enhancements

One of the side benefits of the process of NAT is an improvement in security. Individual computers are harder to target from the outside and if port forwarding is being used computers on the inside of a firewall are less likely to have unmonitored open ports accessible from the Internet.

Ease of Compartmentalization of Your Network

With a large available pool of IP addresses to use internally a network administrator can arrange things to be compartmentalized in a rational and easily remembered fashion and networks can be broken apart easily to isolate for reasons of network performance and security.

Example

You have a large organization that for security reasons has certain departments that do not share network resources.

You can have the main section of the organization set up as follows;

Network Devices 192.168.1.1 to 192.168.1.25
Internal Servers 192.168.1.26 to 192.168.1.50
Printers 192.168.1.51 to 192.168.1.75
Administration Personnel 192.168.1.76 to 192.168.1.100
Sales People 192.168.1.101 to 192.168.1.200
Marketing 192.168.1.201 to 192.168.1.250

You could then have the following groups broken off into separate subnets:

Accounting 192.168.100.1 to 192.168.100.255
Research and Development 172.16.1.1 to 172.16.255.255
Executive Management 192.168.50.1 to 192.168.50.255
Web sites and Email Servers 10.0.50.1 to 10.0.50.255

These addresses do not have to be assigned right away but can be used as planned ranges.

Dynamic NAT

Dynamic NAT

Dynamic NAT maps the private IP addresses to the first available Public Address from a pool of possible Addresses. In the FortiGate firewall this can be done by using IP Pools.

Overloading

This is a form of Dynamic NAT that maps multiple private IP address to a single Public IP address but differentiates them by using a different port assignment. This is probably the most widely used version of NAT. This is also referred to as PAT (Port Address Translation) or Masquerading.

An example would be if you had a single IP address assigned to you by your ISP but had 50 or 60 computers on your local network.

Say the internal address of the interface connected to the ISP was 256.16.32.65 (again an impossible address) with 256.16.32.64 being the remote gateway. If you are using this form of NAT any time one of your computers accesses the Internet it will be seen from the Internet as 256.16.32.65. If you wish to test this go to 2 different computers and verify that they each have a different private IP address then go to a site that tells you your IP address such as www.ipchicken.com. You will see that the site gives the same result of 256.16.32.65, if it existed, as the public address for both computers.

As mentioned before this is sometimes called Port Address Translation because network device uses TCP ports to determine which internal IP address is associated with each session through the network device. For example, if you have a network with internal addresses ranging from 192.168.1.1 to 192.168.1.255 and you have 5 computers all trying to connect to a web site which is normally listening on port 80 all of them will appear to the remote web site to have the IP address of 256.16.32.65 but they will each have a different sending TCP port, with the port numbers being somewhere between 1 and 65 535, although the port numbers between 1 to 1024 are usually reserved or already in use. So it could be something like the following:

192.168.1.10 256.16.32.65:   port 486
192.168.1.23 256.16.32.65:   port 2409
192.168.1.56 256.16.32.65:   port 53763
192.168.1.109 256.16.32.65:   port 5548
192.168.1.201 256.16.32.65:   port 4396

And the remote web server would send the responding traffic back based on those port numbers so the network device would be able to sort through the incoming traffic and pass it on to the correct computer.

Overlapping

Because everybody is using the relative same small selection of Private IP addresses it is inevitable that there will be two networks that share the same network range that will need to talk with each other. This happens most often over Virtual Private Networks or when one organization ends up merging with another. This is a case where a private IP address may be translated into a different private IP address so there are no issues with conflict of addresses or confusion in terms of routing.

An example of this would be when you have a Main office that is using an IP range of 172.16.0.1 to

172.20.255.255 connecting through a VPN to a recently acquired branch office that is already running with an IP range of 172.17.1.1 to 172.17.255.255. Both of these ranges are perfectly valid but because the Branch office range is included in the Main Office range any time the system from the Main office try to connect to an address in the Branch Office the routing the system will not send the packet to the default gateway because according to the routing table the address is in its own subnet.

The plan here would be to NAT in both directions so that traffic from neither side of the firewall would be in conflict and they would be able to route the traffic. Everything coming from the Branch Office could be assigned an address in the 192.168.1.1 to 192.168.1.255 range and everything from the Main office going to the Branch Office could be assigned to an address in the 192.168.10.1 to 192.168.10.255 range.

Static NAT

In Static NAT one internal IP address is always mapped to the same public IP address.

In FortiGate firewall configurations this is most commonly done with the use of Virtual IP addressing.

An example would be if you had a small range of IP addresses assigned to you by your ISP and you wished to use one of those IP address exclusively for a particular server such as an email server.

Say the internal address of the Email server was 192.168.12.25 and the Public IP address from your assigned addresses range from 256.16.32.65 to 256.16.32.127. Many readers will notice that because one of the numbers NAT

is above 255 that this is not a real Public IP address. The Address that you have assigned to the interface connected to your ISP is 256.16.32.66, with 256.16.32.65 being the remote gateway. You wish to use the address of 256.16.32.70 exclusively for your email server.

When using a Virtual IP address you set the external IP address of 256.16.32.70 to map to 192.168.12.25. This means that any traffic being sent to the public address of 256.16.32.70 will be directed to the internal computer at the address of 192.168.12.25

When using a Virtual IP address, this will have the added function that when ever traffic goes from 192.168.12.25 to the Internet it will appear to the recipient of that traffic at the other end as coming from 256.16.32.70.

You should note that if you use Virtual IP addressing with the Port Forwarding enabled you do not get this reciprocal effect and must use IP pools to make sure that the outbound traffic uses the specified IP address.

NAT

NAT

NAT or Network Address Translation is the process that enables a single device such as a router or firewall to act as an agent between the Internet or Public Network and a local or private network. This “agent”, in real time, translates the source IP address of a device on one network interface, usually the Internal, to a different IP address as it leaves another interface, usually the interface connected to the ISP and the Internet. This enables a single public address to represent a significantly larger number of private addresses.

NAT

The Origins of NAT

In order to understand NAT it helps to know why it was created. At one time, every computer that was part of a network had to have it’s own addresses so that the other computers could talk to it. There were a few protocols in use at the time, some of which were only for use on a single network, but of those that were routable, the one that had become the standard for the Internet was IP (Internet Protocol) version 4.

When IP version 4 addressing was created nobody had any idea how many addresses would be needed. The total address range was based on the concept of 2 to the 32nd power, which works out to be 4 294 967 296 potential addresses. Once you eliminate some of those for reserved addresses, broadcast addresses, network addresses, multicasting, etc., you end up with a workable scope of about 3.2 million addressees. This was thought to be more than enough at the time. The designers were not expecting the explosion of personal computing, the World Wide Web or smart phones. As of the beginning of 2012, some estimate the number of computers in the world in the neighborhood of 1 billion, and most of those computer users are going to want to be on the Internet or Search the World Wide Web. In short, we ran out of addresses.

This problem of an address shortage was realized before we actually ran out, and in the mid 1990s 2 technical papers called RFCs numbered 1631 (http://www.ietf.org/rfc/rfc1631.txt) and 1918

(http://tools.ietf.org/html/rfc1918), proposed components of a method that would be used as a solution until a new addressing methodology could be implemented across the Internet infrastructure. For more information on this you can look up IP version 6.

RFC 1631 described a process that would allow networking devices to translate a single public address to multiple private IP addresses and RFC 1918 laid out the use of the private addresses. The addresses that were on the Internet (Public IP addresses) could not be duplicated for them to work as unique addresses, but behind a firewall, which most large institutions had, they could use their own Private IP addresses for internal use and the internal computers could share the external or Public IP address.

To give an idea on a small scale how this works, image that a company has a need for 200 computer addresses. Before Private IP addresses and NAT the company would have purchased a full Class C address range which would have been 254 usable IP addresses; wasting about 50 addresses. Now with NAT, that company only needs 1 IP address for its 200 computers and this leaves the rest of the IP addresses in that range available for other companies to do the same thing.

NAT gives better value than it would first appear because it is not 253 companies that can use 254 addresses but each of those 254 companies could set up their networking infrastructures to use up to thousands of Private IP addresses, more if they don’t all have to talk to the Internet at the same time. This process enabled the Internet to keep growing even though we technically have many more computers networked than we have addresses.

IPv6 in FortiOS

IPv6 in FortiOS

From an administrative point of view IPv6 works almost the same as IPv4 in FortiOS. The primary differences are the use of IPv6 format for addresses and fewer address types for IPv6. There is also no need for NAT if the FortiGate firewall is the interface between IPv6 networks. If the subnets attached to the FortiGate firewall are IPv6 and IPv4 NAT can be configured between the 2 different formats. This will involve either configuring a dual stack routing or IPv4 tunneling configuration. The reason for this is simple. NAT was developed primarily for the purpose of extending the number of usable IPv4 addresses. IPv6’s addressing allows for enough available addresses so the NAT is no longer necessary.

When configuring IPv6 in FortiOS, you can create a dual stack route or IPv4-IPv6 tunnel. A dual stack routing configuration implements dual IP layers, supporting both IPv4 and IPv6, in both hosts and routers. An IPv4-IPv6 tunnel is essentially similar, creating a tunnel that encapsulates IPv6 packets within IPv4 headers that carry these IPv6 packets over IPv4 tunnels. The FortiGate unit can also be easily integrated into an IPv6 network. Connecting the FortiGate unit to an IPv6 network is exactly the same as connecting it to an IPv4 network, the only difference is that you are using IPv6 addresses.

By default the IPv6 settings are not displayed in the Web-based Manager. It is just a matter of enabling the display of these feature to use them through the web interface. To enable them just go to System > Feature Select and select IPv6. Once enabled, you will be able to use IPv6 addresses as well as the IPv4 addressing for the following FortiGate firewall features:

  • Static routing l Policy Routing l Packet and network sniffing l Dynamic routing (RIPv6, BGP4+, and OSPFv3) l IPsec VPN l DNS l DHCP l SSL VPN
  • Network interface addressing

 

IPv6

  • Security Profiles protection l Routing access lists and prefix lists l NAT/Route and Transparent mode l NAT 64 and NAT 66
  • IPv6 tunnel over IPv4 and IPv4 tunnel over IPv6 l Logging and reporting l Security policies
  • SNMP
  • Authentication l Virtual IPs and groups l IPv6 over SCTP
  • IPv6-specific troubleshooting, such as ping6

Dual Stack routing configuration

Dual stack routing implements dual IP layers in hosts and routers, supporting both IPv6 and IPv4. A dual stack architecture supports both IPv4 and IPv6 traffic and routes the appropriate traffic as required to any device on the network. Administrators can update network components and applications to IPv6 on their own schedule, and even maintain some IPv4 support indefinitely if that is necessary. Devices that are on this type of network, and connect to the Internet, can query Internet DNS servers for both IPv4 and IPv6 addresses. If the Internet site supports IPv6, the device can easily connect using the IPv6 address. If the Internet site does not support IPv6, then the device can connect using the IPv4 addresses. In the FortiOS dual stack architecture it is not just the basic addressing functions that operate in both versions of IP. The other features of the appliance such as Security Profiles and routing can also use both IP stacks.

If an organization with a mixed network uses an Internet service provider that does not support IPv6, they can use an IPv6 tunnel broker to connect to IPv6 addresses that are on the Internet. FortiOS supports IPv6 tunneling over IPv4 networks to tunnel brokers. The tunnel broker extracts the IPv6 packets from the tunnel and routes them to their destinations.

IPv6 Tunneling

IPv6 Tunneling is the act of tunneling IPv6 packets from an IPv6 network through an IPv4 network to another IPv6 network. This is different than Network Address Translation (NAT) because once the packet reaches its final destination the true originating address of the sender will still be readable. The IPv6 packets are encapsulated within packets with IPv4 headers, which carry their IPv6 payload through the IPv4 network. This type of configuration is more appropriate for those who have completely transitional over to IPv6, but need an Internet connection, which is still mostly IPv4 addresses.

The key to IPv6 tunneling is the ability of the 2 devices, whether they are a host or a network device, to be dual stack compatible. They have to be able to work with both IPv4 and IPv6 at the same time. In the process the entry node of the tunnel portion of the path will create an encapsulating IPv4 header and transmit the encapsulated packet. The exit node at the end of the tunnel receives the encapsulated packet. The IPv4 header is removed.

The IPv6 header is updated and the IPv6 packet is processed.

There are two types of tunnels in IPv6:

64

Automatic tunnels Automatic tunnels are configured by using IPv4 address information embedded in an IPv6 address – the IPv6 address of the destination host includes information about which IPv4 address the packet should be tunneled to.
Configured tunnels Configured tunnels must be configured manually. These tunnels are used when using IPv6 addresses that do not have any embedded IPv4 information. The IPv6 and IPv4 addresses of the endpoints of the tunnel must be specified.

Tunnel Configurations

There are a few ways in which the tunneling can be performed depending on which segment of the path between the end points of the session the encapsulation takes place.

Network Device to Network Device Dual stack capable devices connected by an IPv4 infrastructure can tunnel IPv6 packets between themselves. In this case, the tunnel spans one segment of the path taken by the IPv6 packets.
Host to Network Device Dual stack capable hosts can tunnel IPv6 packets to an intermediary IPv6 or IPv4 network device that is reachable through an IPv4 infrastructure. This type of tunnel spans the first segment of the path taken by the IPv6 packets.
Host to Host Dual stack capable hosts that are interconnected by an IPv4 infrastructure can tunnel IPv6 packets between themselves. In this case, the tunnel spans the entire path taken by the IPv6 packets.
Network Device to Host Dual stack capable network devices can tunnel IPv6 packets to their final destination IPv6 or IPv4 host. This tunnel spans only the last segment of the path taken by the IPv6 packets.

Regardless of whether the tunnel starts at a host or a network device, the node that does the encapsulation needs to maintain soft state information, such as the maximum transmission unit (MTU), about each tunnel in order to process the IPv6 packets.

Tunneling IPv6 through IPsec VPN

A variation on the tunneling IPv6 through IPv4 is using an IPsec VPN tunnel between to FortiGate devices. FortiOS supports IPv6 over IPsec. In this sort of scenario, 2 networks using IPv6 behind FortiGate units are separated by the Internet, which uses IPv4. An IPsec VPN tunnel is created between the 2 FortiGate units and a tunnel is created over the IPv4 based Internet but the traffic in the tunnel is IPv6. This has the additional advantage of make the traffic secure as well.

IPv6

IPv6

Internet Protocol version 6 (IPv6) will succeed IPv4 as the standard networking protocol of the Internet. IPv6 provides a number of advances over IPv4 but the primary reason for its replacing IPv4 is its limitation in addresses. IPv4 uses 32 bit addresses which means there is a theoretical limit of 2 to the power of 32. The IPv6 address scheme is based on a 128 bit address or a theoretical limit of 2 to the power of 128.

Possible Addresses:

l IPv4 = 4,294,967,296 (over 4 billion) l IPv6 = 340,282,366,920,938,463,463,374,607,431,768,211,456 (over 340 undecillion – We had to look that term up. We didn’t know what a number followed by 36 digits was either)

Assuming a world population of approximately 8 billion people, IPv6 would allow for each individual to have approximately 42,535,295,865,117,200,000,000,000,000 devices with an IP address. That’s 42 quintillion devices.

There is little likelihood that you will ever need to worry about these numbers as any kind of serious limitation in addressing but they do give an idea of the scope of the difference in the available addressing.

Aside from the difference of possible addresses there is also the different formatting of the addresses that will need to be addressed.

A computer would view an IPv4 address as a 32 bit string of binary digits made up of 1s and 0s, broken up into 4 octets of 8 digits separated by a period “.” Example:

10101100.00010000.11111110.00000001

To make number more user friendly for humans we translate this into decimal, again 4 octets separated by a period “.”which works out to:

172.16.254.1

A computer would view an IPv6 address as a 128 bit string of binary digits made up of 1s and 0s, broken up into 8 octets of 16 digits separated by a colon “:”

1000000000000001:0000110110111000:101011000001000:1111111000000001:000000000000000

0:0000000000000000:0000000000000000:0000000000000000

To make number a little more user friendly for humans we translate this into hexadecimal, again 8 octets separated by a colon “:” which works out to:

8001:0DB8:AC10:FE01:0000:0000:0000:0000:

IPv6

Because any four-digit group of zeros within an IPv6 address may be reduced to a single zero or altogether omitted, this address can be shortened further to:

8001:0DB8:AC10:FE01:0:0:0:0 or

8001:0DB8:AC10:FE01::

Some of the other benefits of IPv6 include:

  • More efficient routing l Reduced management requirement l Stateless auto-reconfiguration of hosts l Improved methods to change Internet Service Providers l Better mobility support l Multi-homing l Security
  • Scoped address: link-local, site-local and global address space

RPC over HTTP

RPC over HTTP

How protocol options profiles and SSL inspection profiles handle RPC (Remote Procedure Calls) over HTTP traffic can be configured separately from normal HTTP traffic. The configuration is done in the CLI.

Configuration in Protocol Options

config firewall profile-protocol-options edit 0

IPv6

set rpc-over-http [disable|enable] end

Configuration in SSL/SSH inspection

config firewall ssl-ssh-profile edit deep inspection set rpc-over-http [disable|enable] end

SSL/SSH Inspection

SSL/SSH Inspection

While the profile configuration for SSL/SSH Inspection is found in the Security Profiles section it is enabled in the firewall policy by enabling any of the security profiles. Choosing which of the SSL/SSH Inspection profiles is all that can really be done in the policy.

RPC over HTTP

The reason for having this inspection as part of the policy is the wide spread use of encryption by both legitimate and malicious actors. The legitimate users of the Internet use encryption to hide their information from snooping bad guy but the bad guys use encryption to hide their malicious content from being scanned for viruses and other malicious code by security devices.

By using the correct SSL certificates, the FortiGate can open up encrypted traffic and inspect it for malicious content that would otherwise make it past the other profiles because they couldn’t read the encrypted traffic.

There are two basic types of inspection:

  • Certificate inspection, which only looks at the certificate that encrypted the packets to make sure that it is a recognized and valid certificate.
  • Full inspection, or deep inspection, that looks at all of the content of the packet. While more thorough, it also takes up more resources to perform.

HTTP Strict Transport Security (HSTS) Protocol

HSTS is a protocol used by Google and other web browsers to prevent man-in-the-middle attacks.

When performing deep inspection, the FortiGate intercepts the https traffic and would send its own self-signed CA certificate to the browser. If the browser is configured to use HSTS connections, it would refuse the FortiGate CA certificate since it is not on the trusted list for Google servers.

To keep the CA certificate from being refused, the HSTS settings should be cleared from the browser. Instructions for this vary between browsers.

To gain a deeper understanding read the SSL/SSH Inspection section in the Security Profile chapter.

Mirroring SSL inspected traffic

It is possible to “mirror” or send a copy of traffic decrypted by SSL inspection to one or more FortiGate interfaces so that the traffic can be collected by a raw packet capture tool for archiving or analysis. This feature is available if the inspection mode is set to flow-based.

In theis example, the setting enables the policy to send all traffic decrypted by th policy to the FortiGate port1 and port2 interfaces.

config firewall policy edit 0 set ssl-mirror enable set ssl-mirror-intf port1 port2 end