Radio access
For a mobile phone to access the GPRS core network, it must first connect to a mobile station. This is a cellular tower that is connected to the carrier network.
How the mobile phone connects to the mobile station (MS) is determined by what Radio Access Technologies (RATs) are supported by the MS.
Transport
Transport protocols move data along the carrier network between radio access and the Internet or other carrier networks.
FortiOS Carrier should be present where information enters the Carrier network, to ensure the information entering is correct and not malicious. This means a Carrier-enabled FortiGate unit intercepts the data coming from the SGSN or foreign networks destined for the SSGN or GGSN onto the network, and after the GGSN as the data is leaving the network.
GTP
GPRS Tunnelling Protocol (GTP) is a group of IP-based communications protocols used to carry General Packet Radio Service (GPRS) within Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) networks. It allows carriers to transport actual cellular packets over their network via tunneling. This tunneling allows users to move between SGSNs and still maintain connection to the the Internet through the GGSN.
GTP has three versions version 0, 1, and 2. GTP1 and GTP2 are supported by FortiOS Carrier. The only GTP commands that are common to all forms of GTP are the echo request/response commands that allow GSNs to verify up to once every 60 seconds that neighboring GSNs are alive.
GTPv0
There have been three versions of GTP to date. The original version of GTP (version 0) has the following differences from version GTPv1.
- the tunnel identification is not random
- there are options for transporting X.25
- the fixed port number 3386 is used for all functions, not just charging
- optionally TCP is allowed as a transport instead of UDP
- not all message types are supported in version 0
GTPv1
On a GPRS network, Packet Data Protocol (PDP) context is a data structure used by both the Serving GPRS Support Node (SGSN) and the Gateway GPRS Support Node (GGSN). The PDP context contains the subscribers information including their access point, IP address, IMSI number, and their tunnel endpoint ID for each of the SGSN and GGSN.
The Serving GPRS Support Node (SGSN) is responsible for the delivery of data packets from and to the mobile stations within its geographical service area. Its tasks include packet routing and transfer, mobility management (attach/detach and location management), logical link management, and authentication and charging functions. The location register of the SGSN stores location information (e.g., current cell, current VLR) and user profiles (e.g., IMSI, address(es) used in the packet data network) of all GPRS users registered with this SGSN.
GTPv1–C
GTPv1-C refers to the control layer of the GPRS Transmission network. This part of the protocol deals with network related traffic.
FortiOS Carrier handles GTPv1-C in GTPv1 by using the Tunnel Endpoint IDentifier (TEID), IP address and a Network layer Service Access Point Identifier (NSAPI), sometimes called the application identifier, as an integer value that is part of the PDP context header information used to identify a unique PDP context in a mobile station, and SGSN.
For more information on GTPv1-C, see GTP-C messages.
GTPv1–U
GTPv1-U is defined in 3GPP TS 29.281 and refers to the user layer of the GPRS Tunneling network. This part of the protocol deals with user related traffic, user tunnels, and user administration issues.
A GTPv1-U tunnel is identified by a TEID, an IP address, and a UDP port number. This information uniquely identifies the limb of a GTPv1 PDP context. The IP address and the UDP port number define a UDP/IP path, a connectionless path between two endpoints (i.e. SGSN or GGSN). The TEID identifies the tunnel endpoint in the receiving GTPv1-U protocol entity; it allows for the multiplexing and demultiplexing of GTP tunnels on a UDP/IP path between a given GSN-GSN pair. For more information on GTPv1-U, see GTP-U messages.
The GTP core network consists of one or more SGSNs and GGSNs.